Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interactions of Xanthan Gum and Carboxymethyl Cellulose on Physical and Sensory of Cloudy Asparagus Juice using Response Surface Methodology
Corresponding Author(s) : Nguyen Thi Van Linh
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
This study aims to investigate the effect of xanthan gum and carboxymethylcellulose on physical and chemical qualities of green asparagus juice. We adopted the surface-response method and the CCD experiment design with respect to three response variables including stability, viscosity and colour of the product. It was revealed that both xanthan gum and carboxymethylcellulose concentrations are both positively correlated with viscosity and stability of the product. In addition, the coefficient of the interaction of xanthan gum and carboxymethylcellulose was not significant (p < 0.05). In sensory evaluation, both carboxymethylcellulose and xanthan gum were found to be influential on product state. However, hydrocolloid concentration effects were not profound on perceived product colour and odour.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.S. Vo, D.H. Ngo, L.G. Bach, D.N. Ngo and S.K. Kim, Process Biochem., 54, 188 (2017); https://doi.org/10.1016/j.procbio.2017.01.001.
- N.P.T. Nhan, T.T. Hien, L.T.H. Nhan, P.N.Q. Anh, L.T. Huy, T.C.T. Nguyen, D.T. Nguyen and L.G. Bach, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 279, 235 (2018); https://doi.org/10.4028/www.scientific.net/SSP.279.235.
- A.N.Q. Phan, L.G. Bach, T.D. Nguyen and N.T.H. Le, J. Nanosci. Nanotechnol., 19, 974 (2019); https://doi.org/10.1166/jnn.2019.15925.
- T.T. Hien, N.P.T. Nhan, N.D. Trinh, V.T.T. Ho and L.G. Bach, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 279, 217 (2018); https://doi.org/10.4028/www.scientific.net/SSP.279.217.
- T. Tran, H. Nguyen, D. Nguyen, T. Nguyen, H. Tan, L. Nhan, D. Nguyen, L. Tran, S. Do and T. Nguyen, Processes, 6, 206 (2018); https://doi.org/10.3390/pr6110206.
- N. Shiomi, Phytochemistry, 20, 2581 (1981); https://doi.org/10.1016/0031-9422(81)83099-3.
- J. Wang, Y. Liu, J. Zhao, W. Zhang and X. Pang, J. Sci. Food Agric.,93, 1492 (2013); https://doi.org/10.1002/jsfa.5922.
- S. Bousserouel, J. Le Grandois, F. Gossé, D. Werner, S.W. Barth, E. Marchioni, J. Marescaux and F. Raul, Int. J. Oncol., 43, 394 (2013); https://doi.org/10.3892/ijo.2013.1976.
- S. Jaramillo, F.J.G. Muriana, R. Guillen, A. Jimenez-Araujo, R. Rodriguez-Arcos and S. Lopez, J. Funct. Foods, 26, 1 (2016); https://doi.org/10.1016/j.jff.2016.07.007.
- J. Zhao, W. Zhang, X. Zhu, D. Zhao, K. Wang, R. Wang and W. Qu, J. Sci. Food Agric., 91, 2095 (2011); https://doi.org/10.1002/jsfa.4429.
- Y.G. Ku, D.H. Kang, C.K. Lee, S.Y. Lee, C.S. Ryu, D.E. Kim, M. Polovka, J. Namieœnik and S. Gorinstein, Food Chem., 244, 349 (2018); https://doi.org/10.1016/j.foodchem.2017.10.044.
- R.E. Lill, New Zealand J. Exp. Agric., 8, 163 (1980); https://doi.org/10.1080/03015521.1980.10426252.
- G.S. Johannessen, S. Loncarevic and H. Kruse, Int. J. Food Microbiol., 77, 199 (2002); https://doi.org/10.1016/S0168-1605(02)00051-X.
- F. Tezcan, M. Gültekin-Özgüven, T. Diken, B. Özçelik and F.B. Erim, Food Chem., 115, 873 (2009); https://doi.org/10.1016/j.foodchem.2008.12.103.
- National Research Council (U.S.), National Academies Press: Washington, D.C. (2007).
- T. Beveridge, Crit. Rev. Food Sci. Nutr., 42, 317 (2002); https://doi.org/10.1080/10408690290825556.
- E.M. Coelho, R.G. Gomes, B.A.S. Machado, R.S. Oliveira, M.S. Lima, L.C. de Azêvedo and M.A.U. Guez, Food Hydrocoll., 62, 158 (2017); https://doi.org/10.1016/j.foodhyd.2016.07.027.
- D.B. Genovese and J.E. Lozano, Food Hydrocoll., 15, 1 (2001); https://doi.org/10.1016/S0268-005X(00)00053-9.
- C. Liang, X. Hu, Y. Ni, J. Wu, F. Chen and X. Liao, Food Hydrocoll., 20, 1190 (2006); https://doi.org/10.1016/j.foodhyd.2006.01.010.
- G.E. Ibrahim, I.M. Hassan, A.M. Abd-Elrashid, K.F. El-Massry, A.H. Eh-Ghorab, M.R. Manal and F. Osman, Food Hydrocoll., 25, 91 (2011); https://doi.org/10.1016/j.foodhyd.2010.05.009.
- D. Saha and S. Bhattacharya, J. Food Sci. Technol., 47, 587 (2010); https://doi.org/10.1007/s13197-010-0162-6.
References
T.S. Vo, D.H. Ngo, L.G. Bach, D.N. Ngo and S.K. Kim, Process Biochem., 54, 188 (2017); https://doi.org/10.1016/j.procbio.2017.01.001.
N.P.T. Nhan, T.T. Hien, L.T.H. Nhan, P.N.Q. Anh, L.T. Huy, T.C.T. Nguyen, D.T. Nguyen and L.G. Bach, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 279, 235 (2018); https://doi.org/10.4028/www.scientific.net/SSP.279.235.
A.N.Q. Phan, L.G. Bach, T.D. Nguyen and N.T.H. Le, J. Nanosci. Nanotechnol., 19, 974 (2019); https://doi.org/10.1166/jnn.2019.15925.
T.T. Hien, N.P.T. Nhan, N.D. Trinh, V.T.T. Ho and L.G. Bach, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 279, 217 (2018); https://doi.org/10.4028/www.scientific.net/SSP.279.217.
T. Tran, H. Nguyen, D. Nguyen, T. Nguyen, H. Tan, L. Nhan, D. Nguyen, L. Tran, S. Do and T. Nguyen, Processes, 6, 206 (2018); https://doi.org/10.3390/pr6110206.
N. Shiomi, Phytochemistry, 20, 2581 (1981); https://doi.org/10.1016/0031-9422(81)83099-3.
J. Wang, Y. Liu, J. Zhao, W. Zhang and X. Pang, J. Sci. Food Agric.,93, 1492 (2013); https://doi.org/10.1002/jsfa.5922.
S. Bousserouel, J. Le Grandois, F. Gossé, D. Werner, S.W. Barth, E. Marchioni, J. Marescaux and F. Raul, Int. J. Oncol., 43, 394 (2013); https://doi.org/10.3892/ijo.2013.1976.
S. Jaramillo, F.J.G. Muriana, R. Guillen, A. Jimenez-Araujo, R. Rodriguez-Arcos and S. Lopez, J. Funct. Foods, 26, 1 (2016); https://doi.org/10.1016/j.jff.2016.07.007.
J. Zhao, W. Zhang, X. Zhu, D. Zhao, K. Wang, R. Wang and W. Qu, J. Sci. Food Agric., 91, 2095 (2011); https://doi.org/10.1002/jsfa.4429.
Y.G. Ku, D.H. Kang, C.K. Lee, S.Y. Lee, C.S. Ryu, D.E. Kim, M. Polovka, J. Namieœnik and S. Gorinstein, Food Chem., 244, 349 (2018); https://doi.org/10.1016/j.foodchem.2017.10.044.
R.E. Lill, New Zealand J. Exp. Agric., 8, 163 (1980); https://doi.org/10.1080/03015521.1980.10426252.
G.S. Johannessen, S. Loncarevic and H. Kruse, Int. J. Food Microbiol., 77, 199 (2002); https://doi.org/10.1016/S0168-1605(02)00051-X.
F. Tezcan, M. Gültekin-Özgüven, T. Diken, B. Özçelik and F.B. Erim, Food Chem., 115, 873 (2009); https://doi.org/10.1016/j.foodchem.2008.12.103.
National Research Council (U.S.), National Academies Press: Washington, D.C. (2007).
T. Beveridge, Crit. Rev. Food Sci. Nutr., 42, 317 (2002); https://doi.org/10.1080/10408690290825556.
E.M. Coelho, R.G. Gomes, B.A.S. Machado, R.S. Oliveira, M.S. Lima, L.C. de Azêvedo and M.A.U. Guez, Food Hydrocoll., 62, 158 (2017); https://doi.org/10.1016/j.foodhyd.2016.07.027.
D.B. Genovese and J.E. Lozano, Food Hydrocoll., 15, 1 (2001); https://doi.org/10.1016/S0268-005X(00)00053-9.
C. Liang, X. Hu, Y. Ni, J. Wu, F. Chen and X. Liao, Food Hydrocoll., 20, 1190 (2006); https://doi.org/10.1016/j.foodhyd.2006.01.010.
G.E. Ibrahim, I.M. Hassan, A.M. Abd-Elrashid, K.F. El-Massry, A.H. Eh-Ghorab, M.R. Manal and F. Osman, Food Hydrocoll., 25, 91 (2011); https://doi.org/10.1016/j.foodhyd.2010.05.009.
D. Saha and S. Bhattacharya, J. Food Sci. Technol., 47, 587 (2010); https://doi.org/10.1007/s13197-010-0162-6.