Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Spectral Characterization of D-A Based Cyano-Stilbene Derivatives for Organic Solar Cell Applications
Corresponding Author(s) : R. Ganesamoorthy
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Ten donor-acceptor based (D-A) cyano-stilbene derivatives were synthesized and their structure was confirmed by 1H NMR, GC-MS, FT-IR. The absorption was calculated by UV-visible spectrometer. From the UV-Vis study, stilbenes are having broad and strong absorption in the UV-visible region. The strong and broad absorption in the UV-visible region is the desired property for the high power conversion efficiency organic photovoltaic cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 109, 5868 (2009); https://doi.org/10.1021/cr900182s.
- R. Ganesamoorthy, G. Sathiyan and P. Sakthivel, Sol. Energy Mater. Sol. Cells, 161, 102 (2017); https://doi.org/10.1016/j.solmat.2016.11.024.
- R. Ganesamoorthy, R. Vijayaraghavan, K. Ramki and P. Sakthivel, J. Sci.: Adv. Mater. Devices, 3, 99 (2018); https://doi.org/10.1016/j.jsamd.2017.11.005.
- R. Ganesamoorthy, R. Vijayaraghavan and P. Sakthivel, J. Electron. Mater., 46, 6784 (2017); https://doi.org/10.1007/s11664-017-5706-3.
- P. Gutlich, Y. Garcia and T. Woike, Coord. Chem. Rev., 219-221, 839 (2001); https://doi.org/10.1016/S0010-8545(01)00381-2.
- R. Grabowski, W. Rotkiewicz and W. Rettig, Chem. Rev., 103, 3899 (2003); https://doi.org/10.1021/cr940745l.
- A. Momotake and T. Arai, J. Photochem. Photobiol. Photochem. Rev., 5, 1 (2004); https://doi.org/10.1016/j.jphotochemrev.2004.01.001.
- F. Ververidis, E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar and N. Panopoulos, Biotechnol. J., 2, 1214 (2007); https://doi.org/10.1002/biot.200700084.
- Y. Cai, Q. Luo, M. Sun and H. Corke, Life Sci., 74, 2157 (2004); https://doi.org/10.1016/j.lfs.2003.09.047.
- G. Wittig and W. Haag, Chem. Ber., 88, 1654 (1955); https://doi.org/10.1002/cber.19550881110.
- P. Saiko, A. Szakmary, W. Jaeger and T. Szekeres, Mutat. Res., 658, 68 (2008); https://doi.org/10.1016/j.mrrev.2007.08.004.
- M. Lin and C.S. Yao, Stud. Nat. Prod. Chem., 33, 601 (2006); https://doi.org/10.1016/S1572-5995(06)80035-9.
- A. Cravino, H. Neugebauer, A. Petr, P.J. Skabara, H.J. Spencer, J.W. McDouall, L. Dunsch and N.S. Sariciftci, J. Phys. Chem. B, 110, 2662 (2006); https://doi.org/10.1021/jp0562173.
- H.J. Spencer, P.J. Skabara, M. Giles, I. McCulloch, S.J. Coles and M.B. Hursthouse, J. Mater. Chem., 15, 4783 (2005); https://doi.org/10.1039/b511075k.
- R. Ganesamoorthy, R. Vidya and P. Sakthivel, IET Nanobiotechnol., 12, 147 (2018); https://doi.org/10.1049/iet-nbt.2017.0033.
- Y. Li, Acc. Chem. Res., 45, 723 (2012); https://doi.org/10.1021/ar2002446.
- J.H. Kwon, J.Y. An, H. Jang, S. Choi, D.S. Chung, M.J. Lee, H.J. Cha, J.H. Park, C.E. Park and Y.H. Kim, J. Polym. Sci. A, 49, 1119 (2011); https://doi.org/10.1002/pola.24526.
- K.H. Kim, H. Kang, S.Y. Nam, J. Jung, P.S. Kim, C.H. Cho, C. Lee, S.C. Yoon and B. Kim, Chem. Mater., 23, 5090 (2011); https://doi.org/10.1021/cm202885s.
- Y. Zou, B. Peng, B. Liu, Y. Li, Y. He, K. Zhou and C. Pan, J. Appl. Polym. Sci., 115, 1480 (2010); https://doi.org/10.1002/app.31080.
- A.M. Asiri, Bull. Korean Chem. Soc., 24, 426 (2003); https://doi.org/10.5012/bkcs.2003.24.4.426.
References
Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 109, 5868 (2009); https://doi.org/10.1021/cr900182s.
R. Ganesamoorthy, G. Sathiyan and P. Sakthivel, Sol. Energy Mater. Sol. Cells, 161, 102 (2017); https://doi.org/10.1016/j.solmat.2016.11.024.
R. Ganesamoorthy, R. Vijayaraghavan, K. Ramki and P. Sakthivel, J. Sci.: Adv. Mater. Devices, 3, 99 (2018); https://doi.org/10.1016/j.jsamd.2017.11.005.
R. Ganesamoorthy, R. Vijayaraghavan and P. Sakthivel, J. Electron. Mater., 46, 6784 (2017); https://doi.org/10.1007/s11664-017-5706-3.
P. Gutlich, Y. Garcia and T. Woike, Coord. Chem. Rev., 219-221, 839 (2001); https://doi.org/10.1016/S0010-8545(01)00381-2.
R. Grabowski, W. Rotkiewicz and W. Rettig, Chem. Rev., 103, 3899 (2003); https://doi.org/10.1021/cr940745l.
A. Momotake and T. Arai, J. Photochem. Photobiol. Photochem. Rev., 5, 1 (2004); https://doi.org/10.1016/j.jphotochemrev.2004.01.001.
F. Ververidis, E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar and N. Panopoulos, Biotechnol. J., 2, 1214 (2007); https://doi.org/10.1002/biot.200700084.
Y. Cai, Q. Luo, M. Sun and H. Corke, Life Sci., 74, 2157 (2004); https://doi.org/10.1016/j.lfs.2003.09.047.
G. Wittig and W. Haag, Chem. Ber., 88, 1654 (1955); https://doi.org/10.1002/cber.19550881110.
P. Saiko, A. Szakmary, W. Jaeger and T. Szekeres, Mutat. Res., 658, 68 (2008); https://doi.org/10.1016/j.mrrev.2007.08.004.
M. Lin and C.S. Yao, Stud. Nat. Prod. Chem., 33, 601 (2006); https://doi.org/10.1016/S1572-5995(06)80035-9.
A. Cravino, H. Neugebauer, A. Petr, P.J. Skabara, H.J. Spencer, J.W. McDouall, L. Dunsch and N.S. Sariciftci, J. Phys. Chem. B, 110, 2662 (2006); https://doi.org/10.1021/jp0562173.
H.J. Spencer, P.J. Skabara, M. Giles, I. McCulloch, S.J. Coles and M.B. Hursthouse, J. Mater. Chem., 15, 4783 (2005); https://doi.org/10.1039/b511075k.
R. Ganesamoorthy, R. Vidya and P. Sakthivel, IET Nanobiotechnol., 12, 147 (2018); https://doi.org/10.1049/iet-nbt.2017.0033.
Y. Li, Acc. Chem. Res., 45, 723 (2012); https://doi.org/10.1021/ar2002446.
J.H. Kwon, J.Y. An, H. Jang, S. Choi, D.S. Chung, M.J. Lee, H.J. Cha, J.H. Park, C.E. Park and Y.H. Kim, J. Polym. Sci. A, 49, 1119 (2011); https://doi.org/10.1002/pola.24526.
K.H. Kim, H. Kang, S.Y. Nam, J. Jung, P.S. Kim, C.H. Cho, C. Lee, S.C. Yoon and B. Kim, Chem. Mater., 23, 5090 (2011); https://doi.org/10.1021/cm202885s.
Y. Zou, B. Peng, B. Liu, Y. Li, Y. He, K. Zhou and C. Pan, J. Appl. Polym. Sci., 115, 1480 (2010); https://doi.org/10.1002/app.31080.
A.M. Asiri, Bull. Korean Chem. Soc., 24, 426 (2003); https://doi.org/10.5012/bkcs.2003.24.4.426.