Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic Modeling of Hydrodistillation of Essential Oil Production from Orange (Citrus sinensis) Peels on Pilot Scale
Corresponding Author(s) : Dinh Nhat Do
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Present study involves to the pilot scale hydrodistillation process for production of essential oil of orange peels. The production of orange peels essential oil and the effect of several factors such as time, temperature and the ratio of solid/solvent on yield and quality were studied. In this work, we used fresh orange peels of C. sinensis (orange). The quantitative and qualitative analyses of the essential oils of orange peels were performed by GC/MS and sensory analysis. The maximum yield of orange peels essential oil was 1.2384 % (fresh matter) at distillation conditions (ground fresh material, the material-water ratio of 1:2, time of 105 min from the first drop, the temperature of 132 ºC). Kinetic studies of hydrodistillation process showed that the extraction of orange peels essential oil follows first order kinetic (R2 > 0.95). Limonene is the dominant component of the orange peels essential oil that was identified by chromatography-mass spectrometry (94.22 %). The results of test indicated the orange peels essential oil has good qualities which were suitable to the National Standards of Vietnam.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.S. Vo, D.H. Ngo, L.G. Bach, D.N. Ngo and S.K. Kim, Process Biochem., 54, 188 (2017); https://doi.org/10.1016/j.procbio.2017.01.001.
- N.P.T. Nhan, T.T. Hien, L.T.H. Nhan, P.N.Q. Anh, L.T. Huy, T.C.T. Nguyen, D.T. Nguyen and L.G. Bach, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 279, 235 (2018); https://doi.org/10.4028/www.scientific.net/SSP.279.235.
- A.N.Q. Phan, L.G. Bach, T.D. Nguyen and N.T.H. Le, J. Nanosci. Nanotechnol., 19, 974 (2019); https://doi.org/10.1166/jnn.2019.15925.
- T.T. Hien, N.P.T. Nhan, N.D. Trinh, V.T.T. Ho and L.G. Bach, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 279, 217 (2018); https://doi.org/10.4028/www.scientific.net/SSP.279.217.
- T. Tran, H. Nguyen, D. Nguyen, T. Nguyen, H. Tan, L. Nhan, D. Nguyen, L. Tran, S. Do and T. Nguyen, Processes, 6, 206 (2018); https://doi.org/10.3390/pr6110206.
- P. Tongnuanchan and S. Benjakul, J. Food Sci., 79, R1231 (2014); https://doi.org/10.1111/1750-3841.12492.
- D.R.L. Caccioni, M. Guizzardi, D.M. Biondi, A. Renda and G. Ruberto, Int. J. Food Microbiol., 43, 73 (1998); https://doi.org/10.1016/S0168-1605(98)00099-3.
- M.C. González-Mas, J.L. Rambla, M.P. López-Gresa, M.A. Blázquez and A. Granell, Front. Plant Sci., 10, 12 (2019); https://doi.org/10.3389/fpls.2019.00012.
- M.R. Moreira, A. Ponce, C.E. del Valle and S.I. Roura, LWT-Food Sci. Technol., 38, 565 (2005); https://doi.org/10.1016/j.lwt.2004.07.012.
- Y. Sun and J.D. Oliver, Food Addit. Contam., 11, 549 (1994); https://doi.org/10.1080/02652039409374256.
- M. Hyldgaard, T. Mygind and R.L. Meyer, Front. Microbiol., 3, 12 (2012); https://doi.org/10.3389/fmicb.2012.00012.
- K. Fisher and C.A. Phillips, J. Appl. Microbiol., 101, 1232 (2006); https://doi.org/10.1111/j.1365-2672.2006.03035.x.
- B. Uysal, F. Sozmen, O. Aktas, B.S. Oksal and E.O. Kose, Int. J. Food Sci. Technol., 46, 1455 (2011); https://doi.org/10.1111/j.1365-2621.2011.02640.x.
- A.E. Edris, Phytother. Res., 21, 308 (2007); https://doi.org/10.1002/ptr.2072.
- T.M. Moraes, H. Kushima, F.C. Moleiro, R.C. Santos, L.R. Machado Rocha, M.O. Marques, W. Vilegas and C.A. Hiruma-Lima, Chem. Biol. Interact., 180, 499 (2009); https://doi.org/10.1016/j.cbi.2009.04.006.
- A. Sarkic and I. Stappen, Cosmetics, 5, 11 (2018); https://doi.org/10.3390/cosmetics5010011.
- P. Masango, J. Clean. Prod., 13, 833 (2005); https://doi.org/10.1016/j.jclepro.2004.02.039.
- A. Yildirim, A. Cakir, A. Mavi, M. Yalcin, G. Fauler and Y. Taskesenligil, Flav. Fragr. J., 19, 367 (2004); https://doi.org/10.1002/ffj.1343.
- R.M.F. Vargas, A.M. Lucas, M.S.T. Barroso, D.V. Dutra, M.V. Becker, C.A. Mondin and E. Cassel, J. Essen. Oil Bearing Plants, 15, 839 (2012); https://doi.org/10.1080/0972060X.2012.10644129.
- O.O. Okoh, A.P. Sadimenko and A.J. Afolayan, Food Chem., 120, 308 (2010); https://doi.org/10.1016/j.foodchem.2009.09.084.
- F. Perineau, L. Ganou and G. Vilarem, J. Chem. Technol. Biotechnol., 53, 165 (1992); https://doi.org/10.1002/jctb.280530210.
- M.-T. Golmakani and K. Rezaei, Food Chem., 109, 925 (2008); https://doi.org/10.1016/j.foodchem.2007.12.084.
- W. Guan, S. Li, R. Yan, S. Tang and C. Quan, Food Chem., 101, 1558 (2007); https://doi.org/10.1016/j.foodchem.2006.04.009.
- M.A. Ferhat, B.Y. Meklati, J. Smadja and F. Chemat, J. Chromatogr. A, 1112, 121 (2006); https://doi.org/10.1016/j.chroma.2005.12.030.
- Z.A.A. Aziz, A. Ahmad, S.H.M. Setapar, A. Karakucuk, M.M. Azim, D. Lokhat, M. Rafatullah, M. Ganash, M.A. Kamal and G.M. Ashraf, Curr. Drug Metab., 19, 1100 (2018); https://doi.org/10.2174/1389200219666180723144850.
- V.K. Koul, B.M. Gandotra, S. Koul and S. Ghosh, Indian J. Chem. Technol., 11, 135 (2004).
- H.B. Sowbhagya, S.R. Sampathu and N. Krishnamurthy, J. Food Eng., 80, 1255 (2007); https://doi.org/10.1016/j.jfoodeng.2006.09.019.
- H.B. Sowbhagya, B.V. Sathyendra Rao and N. Krishnamurthy, J. Food Eng., 84, 595 (2008); https://doi.org/10.1016/j.jfoodeng.2007.07.001.
- H.H. Muhammad, C.M. Hasfalina, J. Hishamuddin and Z.A. Zurina, Int. J. Chem. Eng. Appl., 3, 173 (2012); https://doi.org/10.7763/IJCEA.2012.V3.181.
- S. Milojevic, D. Radosavljevic, V. Pavicevic, S. Pejanovic and V. Veljkovic, Hem. Ind., 67, 843 (2013); https://doi.org/10.2298/HEMIND121026009M.
- M.N. Boukhatem, M.A. Ferhat, A. Kameli, F. Saidi and H.T. Kebir, Libyan J. Med., 9, 25431 (2014); https://doi.org/10.3402/ljm.v9.25431.
References
T.S. Vo, D.H. Ngo, L.G. Bach, D.N. Ngo and S.K. Kim, Process Biochem., 54, 188 (2017); https://doi.org/10.1016/j.procbio.2017.01.001.
N.P.T. Nhan, T.T. Hien, L.T.H. Nhan, P.N.Q. Anh, L.T. Huy, T.C.T. Nguyen, D.T. Nguyen and L.G. Bach, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 279, 235 (2018); https://doi.org/10.4028/www.scientific.net/SSP.279.235.
A.N.Q. Phan, L.G. Bach, T.D. Nguyen and N.T.H. Le, J. Nanosci. Nanotechnol., 19, 974 (2019); https://doi.org/10.1166/jnn.2019.15925.
T.T. Hien, N.P.T. Nhan, N.D. Trinh, V.T.T. Ho and L.G. Bach, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 279, 217 (2018); https://doi.org/10.4028/www.scientific.net/SSP.279.217.
T. Tran, H. Nguyen, D. Nguyen, T. Nguyen, H. Tan, L. Nhan, D. Nguyen, L. Tran, S. Do and T. Nguyen, Processes, 6, 206 (2018); https://doi.org/10.3390/pr6110206.
P. Tongnuanchan and S. Benjakul, J. Food Sci., 79, R1231 (2014); https://doi.org/10.1111/1750-3841.12492.
D.R.L. Caccioni, M. Guizzardi, D.M. Biondi, A. Renda and G. Ruberto, Int. J. Food Microbiol., 43, 73 (1998); https://doi.org/10.1016/S0168-1605(98)00099-3.
M.C. González-Mas, J.L. Rambla, M.P. López-Gresa, M.A. Blázquez and A. Granell, Front. Plant Sci., 10, 12 (2019); https://doi.org/10.3389/fpls.2019.00012.
M.R. Moreira, A. Ponce, C.E. del Valle and S.I. Roura, LWT-Food Sci. Technol., 38, 565 (2005); https://doi.org/10.1016/j.lwt.2004.07.012.
Y. Sun and J.D. Oliver, Food Addit. Contam., 11, 549 (1994); https://doi.org/10.1080/02652039409374256.
M. Hyldgaard, T. Mygind and R.L. Meyer, Front. Microbiol., 3, 12 (2012); https://doi.org/10.3389/fmicb.2012.00012.
K. Fisher and C.A. Phillips, J. Appl. Microbiol., 101, 1232 (2006); https://doi.org/10.1111/j.1365-2672.2006.03035.x.
B. Uysal, F. Sozmen, O. Aktas, B.S. Oksal and E.O. Kose, Int. J. Food Sci. Technol., 46, 1455 (2011); https://doi.org/10.1111/j.1365-2621.2011.02640.x.
A.E. Edris, Phytother. Res., 21, 308 (2007); https://doi.org/10.1002/ptr.2072.
T.M. Moraes, H. Kushima, F.C. Moleiro, R.C. Santos, L.R. Machado Rocha, M.O. Marques, W. Vilegas and C.A. Hiruma-Lima, Chem. Biol. Interact., 180, 499 (2009); https://doi.org/10.1016/j.cbi.2009.04.006.
A. Sarkic and I. Stappen, Cosmetics, 5, 11 (2018); https://doi.org/10.3390/cosmetics5010011.
P. Masango, J. Clean. Prod., 13, 833 (2005); https://doi.org/10.1016/j.jclepro.2004.02.039.
A. Yildirim, A. Cakir, A. Mavi, M. Yalcin, G. Fauler and Y. Taskesenligil, Flav. Fragr. J., 19, 367 (2004); https://doi.org/10.1002/ffj.1343.
R.M.F. Vargas, A.M. Lucas, M.S.T. Barroso, D.V. Dutra, M.V. Becker, C.A. Mondin and E. Cassel, J. Essen. Oil Bearing Plants, 15, 839 (2012); https://doi.org/10.1080/0972060X.2012.10644129.
O.O. Okoh, A.P. Sadimenko and A.J. Afolayan, Food Chem., 120, 308 (2010); https://doi.org/10.1016/j.foodchem.2009.09.084.
F. Perineau, L. Ganou and G. Vilarem, J. Chem. Technol. Biotechnol., 53, 165 (1992); https://doi.org/10.1002/jctb.280530210.
M.-T. Golmakani and K. Rezaei, Food Chem., 109, 925 (2008); https://doi.org/10.1016/j.foodchem.2007.12.084.
W. Guan, S. Li, R. Yan, S. Tang and C. Quan, Food Chem., 101, 1558 (2007); https://doi.org/10.1016/j.foodchem.2006.04.009.
M.A. Ferhat, B.Y. Meklati, J. Smadja and F. Chemat, J. Chromatogr. A, 1112, 121 (2006); https://doi.org/10.1016/j.chroma.2005.12.030.
Z.A.A. Aziz, A. Ahmad, S.H.M. Setapar, A. Karakucuk, M.M. Azim, D. Lokhat, M. Rafatullah, M. Ganash, M.A. Kamal and G.M. Ashraf, Curr. Drug Metab., 19, 1100 (2018); https://doi.org/10.2174/1389200219666180723144850.
V.K. Koul, B.M. Gandotra, S. Koul and S. Ghosh, Indian J. Chem. Technol., 11, 135 (2004).
H.B. Sowbhagya, S.R. Sampathu and N. Krishnamurthy, J. Food Eng., 80, 1255 (2007); https://doi.org/10.1016/j.jfoodeng.2006.09.019.
H.B. Sowbhagya, B.V. Sathyendra Rao and N. Krishnamurthy, J. Food Eng., 84, 595 (2008); https://doi.org/10.1016/j.jfoodeng.2007.07.001.
H.H. Muhammad, C.M. Hasfalina, J. Hishamuddin and Z.A. Zurina, Int. J. Chem. Eng. Appl., 3, 173 (2012); https://doi.org/10.7763/IJCEA.2012.V3.181.
S. Milojevic, D. Radosavljevic, V. Pavicevic, S. Pejanovic and V. Veljkovic, Hem. Ind., 67, 843 (2013); https://doi.org/10.2298/HEMIND121026009M.
M.N. Boukhatem, M.A. Ferhat, A. Kameli, F. Saidi and H.T. Kebir, Libyan J. Med., 9, 25431 (2014); https://doi.org/10.3402/ljm.v9.25431.