Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
One Pot Microwave Induced Synthesis, Characterization and Antibacterial Activity of Tetrazamacrocyclic Complexes of Transition Metal Ions of Bio-Inorganic Relevance
Corresponding Author(s) : Devendra Kumar
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Two new series of metal complexes, [M(C18H16N4O4)·2H2O] (CH3COO−)2 and [M(C22H24N4)·2H2O] (CH3COO−)2, where M= Co2+/Ni2+/Cu2+ have been prepared under microwave irradiation condition using microwave synthesizer. All the synthesized compounds were characterized by melting point determination of recrystallized samples, running single spot on TLC, elemental analyses, IR, UV-visible spectral studies. Synthesized macrocyclic complexes have been tested for their antibacterial activity against two bacteria Klebsiella pneumoniae and Escherichia coli by adopting disk diffusion method. The antibacterial activity was compared with amikacin antibiotic and it has been found that the complexes exhibited potential antibacterial activity. From the antibacterial studies, it has been found that the copper complexes were more effective on the microorganism in comparison to Ni(II) and Co(II) complexes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Shahid-ul-Islam, M. Shahid and F. Mohammad, Ind. Eng. Chem. Res., 52, 5245 (2013); https://doi.org/10.1021/ie303627x.
- S.E. Manahan, Chemistry, Green Chemistry and Environmental Chemistry, In: Green Chemistry and the Ten Commandments of Sustainability, ChemChar Research Inc.: USA edn 2 (2006).
- M. Hedidi, S.M. Hamdi, T. Mazari, B. Boutemeur, C. Rabia, F. Chemat and M. Hamdi, Tetrahedron, 62, 5652 (2006); https://doi.org/10.1016/j.tet.2006.03.095.
- K. Mahajan, M. Swami and R.V. Singh, Russ. J. Coord. Chem., 35, 179 (2009); https://doi.org/10.1134/S1070328409030038.
- A.P. Mishra, N. Sharma and R.K. Jain, Avan. Quím., 7, 77 (2012).
- J.K. Tang, Y.Z. Li, Q.L. Wang, E.Q. Gao, D.Z. Liao, Z.H. Jiang, S.P. Yan, P. Cheng, L.F. Wang and G.L. Wang, Inorg. Chem., 41, 2188 (2002); https://doi.org/10.1021/ic010674q.
- J.H. Bi, M. Li and Y. Chen, Asian J. Chem., 22, 7389 (2010).
- D. Parker, P.K. Senanayake and J.A. Gareth Williams, J. Chem. Soc. Perkin II, 2129 (1998); https://doi.org/10.1039/a801270i.
- C.J. Burrows and J.G. Muller, Chem. Rev., 98, 1109 (1998); https://doi.org/10.1021/cr960421s.
- J.G. Muller, X. Chen, A.C. Dadiz, S.E. Rokita and C.J. Burrows, Pure Appl. Chem., 65, 545 (1993); https://doi.org/10.1351/pac199365030545.
- K.D. Karlin and Y. Gultneh, Prog. Inorg. Chem., 35, 219 (1987); https://doi.org/10.1002/9780470166369.ch3.
- L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press: Cambridge, edn 2 (1989).
- D.P. Singh, R. Kumar, V. Malik and P. Tyagi, Transition Met. Chem., 32, 1051 (2007); https://doi.org/10.1007/s11243-007-0279-2.
- R. Huszánk, G. Lendvay and O. Horváth, J. Bioinorg. Chem., 12, 681 (2007).
- D.W. Armstrong, K. Rundlett and G.L. Reid, Anal. Chem., 66, 1690 (1994); https://doi.org/10.1021/ac00082a015.
- G.W. Gokel, W.M. Leevy and M.E. Weber, Chem. Rev., 104, 2723 (2004); https://doi.org/10.1021/cr020080k.
- T.J. Hubin, P.N.A. Amoyaw, K.D. Roewe, N.C. Simpson, R.D. Maples, T.R.N. Carder Freeman, A.N. Cain, J.G. Le, S.J. Archibald, S.I. Khan, B.L. Tekwani and M.O.F. Khan, Bioorg. Med. Chem., 22, 3239 (2014); https://doi.org/10.1016/j.bmc.2014.05.003.
- H.A. E1-Boraey and O.A. El-Gammal, Open Chem. J., 5, 51 (2018); https://doi.org/10.2174/1874842201805010051.
- S. Ali, V. Singh, P. Jain and V. Tripathi, J. Saudi Chem. Soc., 23, 52 (2019); https://doi.org/10.1016/j.jscs.2018.04.005.
- R.N. Pradhan, S.M. Hossain, A. Lakma, D.D. Stojkov, T.Z. Verbiæ, G. Angelovski, R. Pujales-Paradela, C. Platas-Iglesias and A.K. Singh, Inorg. Chim. Acta, 486, 252 (2019); https://doi.org/10.1016/j.ica.2018.10.050.
- A. Chaudhary and E. Rawat, Int. J. Inorg. Chem., 2014, Article ID 509151 (2014); https://doi.org/10.1155/2014/509151.
- D.A. Robson, L.H. Rees, P. Mountford and M. Schroder, Chem. Commun., 14, 1269 (2000); https://doi.org/10.1039/b003019h.
- L.A. Ehrlich, P.J. Skrdla, W.K. Jarrell, J.W. Sibert, N.R. Armstrong, S.S. Saavedra, A.G.M. Barrett and B.M. Hoffman, Inorg. Chem., 39, 3963 (2000); https://doi.org/10.1021/ic991033m.
- S. Chaudhary and D. Kumar, Proc. Nat. Acad. Sci. (India), 78, 207 (2008).
- D. Kumar and S. Singh, J. Chem. Pharm. Res., 8, 744 (2016).
- K.R. Fiebelkorn, S.A. Crawford, M.L. McElmeel and J.H. Jorgensen, J. Clin. Microbiol., 41, 4740 (2003); https://doi.org/10.1128/JCM.41.10.4740-4744.2003.
- D.P. Singh and V. Grover, Acta Chim. Slov., 57, 780 (2010).
- S.N. Singh, R.K. Agarwal and M. Katyal, Molecular Structure: A Spectroscopic Approach, Discovery Publication: New Delhi (1990).
- N.S. Gill, R.H. Nuttall, D.E. Scaife and D.W.A. Sharp, J. Inorg. Nucl. Chem., 18, 79 (1961); https://doi.org/10.1016/0022-1902(61)80372-2.
- V.K. Sharma, O.P. Pandey, S.K. Sengupta and D.M. Halepoto, Transition Met. Chem., 14, 263 (1989); https://doi.org/10.1007/BF01098225.
- A. Aukauloo, X. Ottenwaelder, R. Ruiz, S. Poussereau, Y. Pei, Y. Journaux, P. Fleurat, F. Volatron, B. Cervera and M.C. Muñoz, Eur. J. Inorg. Chem., 7, 1067 (1999); https://doi.org/10.1002/(SICI)1099-0682(199907)1999:7<1067::AIDEJIC1067>3.0.CO;2-7.
- A.A. Hashmi, A.A. Sheikh, S. Shreaz and L.A. Khan, J. Chem. Pharm. Res., 2, 172 (2010).
- R.A. Sheikh, S. Sheikh, L.A. Khan and A.A. Hashmi, J. Chem. Pharm. Res., 2, 274 (2010).
References
Shahid-ul-Islam, M. Shahid and F. Mohammad, Ind. Eng. Chem. Res., 52, 5245 (2013); https://doi.org/10.1021/ie303627x.
S.E. Manahan, Chemistry, Green Chemistry and Environmental Chemistry, In: Green Chemistry and the Ten Commandments of Sustainability, ChemChar Research Inc.: USA edn 2 (2006).
M. Hedidi, S.M. Hamdi, T. Mazari, B. Boutemeur, C. Rabia, F. Chemat and M. Hamdi, Tetrahedron, 62, 5652 (2006); https://doi.org/10.1016/j.tet.2006.03.095.
K. Mahajan, M. Swami and R.V. Singh, Russ. J. Coord. Chem., 35, 179 (2009); https://doi.org/10.1134/S1070328409030038.
A.P. Mishra, N. Sharma and R.K. Jain, Avan. Quím., 7, 77 (2012).
J.K. Tang, Y.Z. Li, Q.L. Wang, E.Q. Gao, D.Z. Liao, Z.H. Jiang, S.P. Yan, P. Cheng, L.F. Wang and G.L. Wang, Inorg. Chem., 41, 2188 (2002); https://doi.org/10.1021/ic010674q.
J.H. Bi, M. Li and Y. Chen, Asian J. Chem., 22, 7389 (2010).
D. Parker, P.K. Senanayake and J.A. Gareth Williams, J. Chem. Soc. Perkin II, 2129 (1998); https://doi.org/10.1039/a801270i.
C.J. Burrows and J.G. Muller, Chem. Rev., 98, 1109 (1998); https://doi.org/10.1021/cr960421s.
J.G. Muller, X. Chen, A.C. Dadiz, S.E. Rokita and C.J. Burrows, Pure Appl. Chem., 65, 545 (1993); https://doi.org/10.1351/pac199365030545.
K.D. Karlin and Y. Gultneh, Prog. Inorg. Chem., 35, 219 (1987); https://doi.org/10.1002/9780470166369.ch3.
L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press: Cambridge, edn 2 (1989).
D.P. Singh, R. Kumar, V. Malik and P. Tyagi, Transition Met. Chem., 32, 1051 (2007); https://doi.org/10.1007/s11243-007-0279-2.
R. Huszánk, G. Lendvay and O. Horváth, J. Bioinorg. Chem., 12, 681 (2007).
D.W. Armstrong, K. Rundlett and G.L. Reid, Anal. Chem., 66, 1690 (1994); https://doi.org/10.1021/ac00082a015.
G.W. Gokel, W.M. Leevy and M.E. Weber, Chem. Rev., 104, 2723 (2004); https://doi.org/10.1021/cr020080k.
T.J. Hubin, P.N.A. Amoyaw, K.D. Roewe, N.C. Simpson, R.D. Maples, T.R.N. Carder Freeman, A.N. Cain, J.G. Le, S.J. Archibald, S.I. Khan, B.L. Tekwani and M.O.F. Khan, Bioorg. Med. Chem., 22, 3239 (2014); https://doi.org/10.1016/j.bmc.2014.05.003.
H.A. E1-Boraey and O.A. El-Gammal, Open Chem. J., 5, 51 (2018); https://doi.org/10.2174/1874842201805010051.
S. Ali, V. Singh, P. Jain and V. Tripathi, J. Saudi Chem. Soc., 23, 52 (2019); https://doi.org/10.1016/j.jscs.2018.04.005.
R.N. Pradhan, S.M. Hossain, A. Lakma, D.D. Stojkov, T.Z. Verbiæ, G. Angelovski, R. Pujales-Paradela, C. Platas-Iglesias and A.K. Singh, Inorg. Chim. Acta, 486, 252 (2019); https://doi.org/10.1016/j.ica.2018.10.050.
A. Chaudhary and E. Rawat, Int. J. Inorg. Chem., 2014, Article ID 509151 (2014); https://doi.org/10.1155/2014/509151.
D.A. Robson, L.H. Rees, P. Mountford and M. Schroder, Chem. Commun., 14, 1269 (2000); https://doi.org/10.1039/b003019h.
L.A. Ehrlich, P.J. Skrdla, W.K. Jarrell, J.W. Sibert, N.R. Armstrong, S.S. Saavedra, A.G.M. Barrett and B.M. Hoffman, Inorg. Chem., 39, 3963 (2000); https://doi.org/10.1021/ic991033m.
S. Chaudhary and D. Kumar, Proc. Nat. Acad. Sci. (India), 78, 207 (2008).
D. Kumar and S. Singh, J. Chem. Pharm. Res., 8, 744 (2016).
K.R. Fiebelkorn, S.A. Crawford, M.L. McElmeel and J.H. Jorgensen, J. Clin. Microbiol., 41, 4740 (2003); https://doi.org/10.1128/JCM.41.10.4740-4744.2003.
D.P. Singh and V. Grover, Acta Chim. Slov., 57, 780 (2010).
S.N. Singh, R.K. Agarwal and M. Katyal, Molecular Structure: A Spectroscopic Approach, Discovery Publication: New Delhi (1990).
N.S. Gill, R.H. Nuttall, D.E. Scaife and D.W.A. Sharp, J. Inorg. Nucl. Chem., 18, 79 (1961); https://doi.org/10.1016/0022-1902(61)80372-2.
V.K. Sharma, O.P. Pandey, S.K. Sengupta and D.M. Halepoto, Transition Met. Chem., 14, 263 (1989); https://doi.org/10.1007/BF01098225.
A. Aukauloo, X. Ottenwaelder, R. Ruiz, S. Poussereau, Y. Pei, Y. Journaux, P. Fleurat, F. Volatron, B. Cervera and M.C. Muñoz, Eur. J. Inorg. Chem., 7, 1067 (1999); https://doi.org/10.1002/(SICI)1099-0682(199907)1999:7<1067::AIDEJIC1067>3.0.CO;2-7.
A.A. Hashmi, A.A. Sheikh, S. Shreaz and L.A. Khan, J. Chem. Pharm. Res., 2, 172 (2010).
R.A. Sheikh, S. Sheikh, L.A. Khan and A.A. Hashmi, J. Chem. Pharm. Res., 2, 274 (2010).