Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Zinc Oxide Supported onto Biogenic Silica from Gigantochloa atroviolacea Leaves: Preparation, Characterization and Antibacterial Activity
Corresponding Author(s) : Elsa Sriwahyuni
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
Bamboo rod is a well known raw material utilized to make houses, papers, handicrafts, chopsticks and medicines. On the other hand, the utilzation of leaves, which are often considered as garbages, receive less attentions. Even though, bamboo leaves are good sources of SiO2 or silica. This work reports the preparation of zinc oxide (ZnO) supported onto biogenic silica (SiO2) from leaves of Gigantochloa atroviolacea, characterization and the antibacterial activities of ZnO@SiO2 against Staphylococcus epidermidis. The ZnO was supported onto biogenic SiO2 by using impregnation method of SiO2 in zinc salt [Zn(NO3)2·6H2O] solution. A combination XRD and SEM-EDX techniques were used to confirm the formation of ZnO on ZnO@SiO2. Investigations indicate that the as prepared ZnO@SiO2 revealed significant antibacterial activity against Staphylococcus epidermidis bacterial strain.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.P. Silva, A.P. Silveira, C.C. Bonatto, I.G. Reis and P.V. Milreu, Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future, In: Nanostructures for Antimicrobial Therapy, Elsevier, Chap. 26, p. 577 (2017);
- S. Abram, J. Gagnon, M. Priebe, N. Hérault and K.M. Fromm, Chim. Int. J. Chem., 72, 249 (2018); https://doi.org/10.2533/chimia.2018.249.
- S. Remya, C. Mohan, C. Ravishankar, R. Badonia and T. Gopal, eds.: A.K. Haghi and E. Carvajal-Millan, Food Composition and Analysis: Methods and Strategies, CRC press, p. 377 (2014); https://doi.org/10.1201/b16843-22.
- Y. Jiang, L. Zhang, D. Wen and Y. Ding, Mater. Sci. Eng. C, 69, 1361 (2016); https://doi.org/10.1016/j.msec.2016.08.044.
- Z. Emami-Karvani, Afr. J. Microbiol. Res., 5, 18 (2012).
- S. Wang, J. Wu, H. Yang, X. Liu, Q. Huang and Z. Lu, J. Mater. Sci. Mater. Med., 28, 23 (2017); https://doi.org/10.1007/s10856-016-5837-8.
- J.Y. Bae and S.N. Park, Int. J. Cosmet. Sci., 38, 550 (2016); https://doi.org/10.1111/ics.12318.
- X. Zhang, L. Chen, Y. Sun, Y. Bai, B. Huang and K. Chen, Spectrochim. Acta A Mol. Biomol. Spectrosc., 193, 133 (2018); https://doi.org/10.1016/j.saa.2017.12.019.
- L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni and R.A. Rahman, AIP Conf. Proc., 1657, 100012 (2015); https://doi.org/10.1063/1.4915219.
- T. Gordon, M. Kopel, J. Grinblat, E. Banin and S. Margel, J. Mater. Chem., 22, 3614 (2012); https://doi.org/10.1039/c2jm15510a.
- K. Elumalai and S. Velmurugan, Appl. Surf. Sci., 345, 329 (2015); https://doi.org/10.1016/j.apsusc.2015.03.176.
- D. Grace and A. Fetsch, Staphylococcus aureus-A Foodborne Pathogen: Epidemiology, Detection, Characterization, Prevention and Control: An Overview, Elsevier: Amsterdam, Chap. 1, pp. 3-10 (2018).
- S. Fanny Chiat Orou, K.J. Hang, M. Thuya Thien, Y.L. Ying, L.C. Foh, N. Duong Ngoc Diem, B.H. Goh, S.Y. Pung and Y.F. Pung, J. Ind. Eng. Chem., 62, 333 (2018); https://doi.org/10.1016/j.jiec.2018.01.013.
- A. Joe, S.H. Park, D.J. Kim, Y.J. Lee, K.H. Jhee, Y. Sohn and E.S.Y. Jang, J. Solid State Chem., 267, 124 (2018); https://doi.org/10.1016/j.jssc.2018.08.003.
- E. ªahin, S.J. Musevi and A. Aslani, Arab. J. Chem., 10, S230 (2017); https://doi.org/10.1016/j.arabjc.2012.07.027.
- M. Otto, ed.: P. Fey, Staphylococcus epidermidis Pathogenesis, Staphylococcus epidermidis. In: Methods in Molecular Biology (Methods and Protocols), Humana Press, Totowa, NJ, vol. 1106 (2014).
- J. Wyszkowska, A. Borowik J. Kucharski and M. Kucharski, J. Elemntol., 18, 769 (2012); https://doi.org/10.5601/jelem.2013.18.4.455.
- I.M. Saianda, C.M.V. Bettencourt, M.C. Queiroga, G. Ferreira-Dias and C.L. Vilela, Rev. Med. Vet. (Toulouse), 158, 362 (2007).
- R.O. Schneider, C. Diehl, F.M. dos Santos, A.C. Piffer, A.W.A. Garcia, M.I.R. Kulmann, A. Schrank, L. Kmetzsch, M.H. Vainstein and C.C. Staats, Sci. Rep., 5, 10104 (2015); https://doi.org/10.1038/srep10104.
- T.J.B. Simons, J. Membr. Biol., 123, 63 (1991); https://doi.org/10.1007/BF01993964.
- C.A. Reid, M.S. Hildebrand, S.A. Mullen, J.M. Hildebrand, S.F. Berkovic and S. Petrou, Br. J. Pharmacol., 174, 119 (2017); https://doi.org/10.1111/bph.13658.
- P. Singh and A. Nanda, J. Chem. Pharm. Res., 5, 457 (2013).
- L.S. Cunden, A. Gaillard and E.M. Nolan, Chem. Sci., 7, 1338 (2016); https://doi.org/10.1039/C5SC03655K.
- V. Sharma, R.K. Shukla, N. Saxena, D. Parmar, M. Das and A. Dhawan, Toxicol. Lett., 185, 211 (2009); https://doi.org/10.1016/j.toxlet.2009.01.008.
- H. Akiyama, O. Yamasaki, H. Kanzaki, J. Tada and J. Arata, J. Dermatol. Sci., 17, 67 (1998); https://doi.org/10.1016/S0923-1811(97)00070-4.
- P. Cervantes-Avilés, E.M.S. Brito, R. Duran, A.B. Martínez and G. Cuevas-Rodríguez, J. Nanopart. Res., 18, 173 (2016); https://doi.org/10.1007/s11051-016-3481-3.
- A. Loukanov, C. Filipov, V. Valcheva, M. Lecheva and S. Emin, J. Nanopart. Res., 17, 196 (2015); https://doi.org/10.1007/s11051-015-3001-x.
- T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand and A. Varma, J. Nanopart. Res., 17, 288 (2015); https://doi.org/10.1007/s11051-015-3093-3.
- W. Gao, S. Thamphiwatana, P. Angsantikul and L. Zhang, Wires Nanomed. Nanobiotechnol., 6, 532 (2014); https://doi.org/10.1002/wnan.1282.
- B. Kataria, V. Shyam, B. Kaushik, J. Vasoya, J. Joseph, C. Savaliya, S. Kumar, S.P. Parikh, C.M. Thakar, D.D. Pandya, A.B. Ravalia, J.H. Markna and N.H. Shah, AIP Conf. Proc., 1837, 040043 (2017); https://doi.org/10.1063/1.4982127.
- D. Davis and S. Singh, Indian J. Nanosci., 4, 1 (2016).
- R. Zhao, K. Li, Z. Wang, X. Xing and Y. Wang, J. Phys. Chem. Solids, 112, 43 (2018); https://doi.org/10.1016/j.jpcs.2017.08.039.
- A.J. Ahamed and P.V. Kumar, J. Chem. Pharm. Res., 8, 624 (2016).
- S. He, M. Zheng, L. Yao, X. Yuan, M. Li, L. Ma and W. Shen, Appl. Surf. Sci., 256, 2557 (2010); https://doi.org/10.1016/j.apsusc.2009.10.104.
- Z. Ji, S. Zhao, C. Wang and K. Liu, Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 117, 63 (2005); https://doi.org/10.1016/j.mseb.2004.10.016.
- Z. Kalantari-Bolaghi, S.M. Masoudpanah and M. Hasheminiasari, J. Sol-Gel Sci. Technol., 86, 711 (2018); https://doi.org/10.1007/s10971-018-4658-2.
- K.D. Bhatte, S.I. Fujita, M. Arai, A.B. Pandit and B.M. Bhanage, Ultrason. Sonochem., 18, 54 (2011); https://doi.org/10.1016/j.ultsonch.2010.06.001.
- M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zak, H. Kargar and M.H.N. Abd Hamid, Ceram. Int., 40, 4827 (2014); https://doi.org/10.1016/j.ceramint.2013.09.032.
- A. Khorsand Zak, W.H. Abd. Majid, M.R. Mahmoudian, M. Darroudi and R. Yousefi, Adv. Powder Technol., 24, 618 (2013); https://doi.org/10.1016/j.apt.2012.11.008.
- T. Santhaveesuk, Y. Keawtoakrue, K. Siwawongkasem, and S. Choopun, Key Eng. Mater., 675, 61 (2016); https://doi.org/10.4028/www.scientific.net/KEM.675-676.61.
References
L.P. Silva, A.P. Silveira, C.C. Bonatto, I.G. Reis and P.V. Milreu, Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future, In: Nanostructures for Antimicrobial Therapy, Elsevier, Chap. 26, p. 577 (2017);
S. Abram, J. Gagnon, M. Priebe, N. Hérault and K.M. Fromm, Chim. Int. J. Chem., 72, 249 (2018); https://doi.org/10.2533/chimia.2018.249.
S. Remya, C. Mohan, C. Ravishankar, R. Badonia and T. Gopal, eds.: A.K. Haghi and E. Carvajal-Millan, Food Composition and Analysis: Methods and Strategies, CRC press, p. 377 (2014); https://doi.org/10.1201/b16843-22.
Y. Jiang, L. Zhang, D. Wen and Y. Ding, Mater. Sci. Eng. C, 69, 1361 (2016); https://doi.org/10.1016/j.msec.2016.08.044.
Z. Emami-Karvani, Afr. J. Microbiol. Res., 5, 18 (2012).
S. Wang, J. Wu, H. Yang, X. Liu, Q. Huang and Z. Lu, J. Mater. Sci. Mater. Med., 28, 23 (2017); https://doi.org/10.1007/s10856-016-5837-8.
J.Y. Bae and S.N. Park, Int. J. Cosmet. Sci., 38, 550 (2016); https://doi.org/10.1111/ics.12318.
X. Zhang, L. Chen, Y. Sun, Y. Bai, B. Huang and K. Chen, Spectrochim. Acta A Mol. Biomol. Spectrosc., 193, 133 (2018); https://doi.org/10.1016/j.saa.2017.12.019.
L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni and R.A. Rahman, AIP Conf. Proc., 1657, 100012 (2015); https://doi.org/10.1063/1.4915219.
T. Gordon, M. Kopel, J. Grinblat, E. Banin and S. Margel, J. Mater. Chem., 22, 3614 (2012); https://doi.org/10.1039/c2jm15510a.
K. Elumalai and S. Velmurugan, Appl. Surf. Sci., 345, 329 (2015); https://doi.org/10.1016/j.apsusc.2015.03.176.
D. Grace and A. Fetsch, Staphylococcus aureus-A Foodborne Pathogen: Epidemiology, Detection, Characterization, Prevention and Control: An Overview, Elsevier: Amsterdam, Chap. 1, pp. 3-10 (2018).
S. Fanny Chiat Orou, K.J. Hang, M. Thuya Thien, Y.L. Ying, L.C. Foh, N. Duong Ngoc Diem, B.H. Goh, S.Y. Pung and Y.F. Pung, J. Ind. Eng. Chem., 62, 333 (2018); https://doi.org/10.1016/j.jiec.2018.01.013.
A. Joe, S.H. Park, D.J. Kim, Y.J. Lee, K.H. Jhee, Y. Sohn and E.S.Y. Jang, J. Solid State Chem., 267, 124 (2018); https://doi.org/10.1016/j.jssc.2018.08.003.
E. ªahin, S.J. Musevi and A. Aslani, Arab. J. Chem., 10, S230 (2017); https://doi.org/10.1016/j.arabjc.2012.07.027.
M. Otto, ed.: P. Fey, Staphylococcus epidermidis Pathogenesis, Staphylococcus epidermidis. In: Methods in Molecular Biology (Methods and Protocols), Humana Press, Totowa, NJ, vol. 1106 (2014).
J. Wyszkowska, A. Borowik J. Kucharski and M. Kucharski, J. Elemntol., 18, 769 (2012); https://doi.org/10.5601/jelem.2013.18.4.455.
I.M. Saianda, C.M.V. Bettencourt, M.C. Queiroga, G. Ferreira-Dias and C.L. Vilela, Rev. Med. Vet. (Toulouse), 158, 362 (2007).
R.O. Schneider, C. Diehl, F.M. dos Santos, A.C. Piffer, A.W.A. Garcia, M.I.R. Kulmann, A. Schrank, L. Kmetzsch, M.H. Vainstein and C.C. Staats, Sci. Rep., 5, 10104 (2015); https://doi.org/10.1038/srep10104.
T.J.B. Simons, J. Membr. Biol., 123, 63 (1991); https://doi.org/10.1007/BF01993964.
C.A. Reid, M.S. Hildebrand, S.A. Mullen, J.M. Hildebrand, S.F. Berkovic and S. Petrou, Br. J. Pharmacol., 174, 119 (2017); https://doi.org/10.1111/bph.13658.
P. Singh and A. Nanda, J. Chem. Pharm. Res., 5, 457 (2013).
L.S. Cunden, A. Gaillard and E.M. Nolan, Chem. Sci., 7, 1338 (2016); https://doi.org/10.1039/C5SC03655K.
V. Sharma, R.K. Shukla, N. Saxena, D. Parmar, M. Das and A. Dhawan, Toxicol. Lett., 185, 211 (2009); https://doi.org/10.1016/j.toxlet.2009.01.008.
H. Akiyama, O. Yamasaki, H. Kanzaki, J. Tada and J. Arata, J. Dermatol. Sci., 17, 67 (1998); https://doi.org/10.1016/S0923-1811(97)00070-4.
P. Cervantes-Avilés, E.M.S. Brito, R. Duran, A.B. Martínez and G. Cuevas-Rodríguez, J. Nanopart. Res., 18, 173 (2016); https://doi.org/10.1007/s11051-016-3481-3.
A. Loukanov, C. Filipov, V. Valcheva, M. Lecheva and S. Emin, J. Nanopart. Res., 17, 196 (2015); https://doi.org/10.1007/s11051-015-3001-x.
T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand and A. Varma, J. Nanopart. Res., 17, 288 (2015); https://doi.org/10.1007/s11051-015-3093-3.
W. Gao, S. Thamphiwatana, P. Angsantikul and L. Zhang, Wires Nanomed. Nanobiotechnol., 6, 532 (2014); https://doi.org/10.1002/wnan.1282.
B. Kataria, V. Shyam, B. Kaushik, J. Vasoya, J. Joseph, C. Savaliya, S. Kumar, S.P. Parikh, C.M. Thakar, D.D. Pandya, A.B. Ravalia, J.H. Markna and N.H. Shah, AIP Conf. Proc., 1837, 040043 (2017); https://doi.org/10.1063/1.4982127.
D. Davis and S. Singh, Indian J. Nanosci., 4, 1 (2016).
R. Zhao, K. Li, Z. Wang, X. Xing and Y. Wang, J. Phys. Chem. Solids, 112, 43 (2018); https://doi.org/10.1016/j.jpcs.2017.08.039.
A.J. Ahamed and P.V. Kumar, J. Chem. Pharm. Res., 8, 624 (2016).
S. He, M. Zheng, L. Yao, X. Yuan, M. Li, L. Ma and W. Shen, Appl. Surf. Sci., 256, 2557 (2010); https://doi.org/10.1016/j.apsusc.2009.10.104.
Z. Ji, S. Zhao, C. Wang and K. Liu, Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 117, 63 (2005); https://doi.org/10.1016/j.mseb.2004.10.016.
Z. Kalantari-Bolaghi, S.M. Masoudpanah and M. Hasheminiasari, J. Sol-Gel Sci. Technol., 86, 711 (2018); https://doi.org/10.1007/s10971-018-4658-2.
K.D. Bhatte, S.I. Fujita, M. Arai, A.B. Pandit and B.M. Bhanage, Ultrason. Sonochem., 18, 54 (2011); https://doi.org/10.1016/j.ultsonch.2010.06.001.
M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zak, H. Kargar and M.H.N. Abd Hamid, Ceram. Int., 40, 4827 (2014); https://doi.org/10.1016/j.ceramint.2013.09.032.
A. Khorsand Zak, W.H. Abd. Majid, M.R. Mahmoudian, M. Darroudi and R. Yousefi, Adv. Powder Technol., 24, 618 (2013); https://doi.org/10.1016/j.apt.2012.11.008.
T. Santhaveesuk, Y. Keawtoakrue, K. Siwawongkasem, and S. Choopun, Key Eng. Mater., 675, 61 (2016); https://doi.org/10.4028/www.scientific.net/KEM.675-676.61.