Copyright (c) 2024 Rakesh Kumar Sahu, Dr.Sanghamitra Pradhan, Prof.Sujata Mishra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Interaction in Ternary Systems of Tri-n-octylamine/Tri-n-butyl Phosphate/Octanoic Acid with n-Hexane and 1-Hexanol at Different Temperatures
Corresponding Author(s) : S. Mishra
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
Density, dielectric constant and refractive index were measured for three ternary systems viz. tri-n-octylamine/tri-n-butyl phosphate/octanoic acid (TOA/TBP/OA), with n-hexane and 1-hexanol at T = 303.15, 308.15 and 313.15 K. Derived properties like molar volume, molar polarization, molar refraction and excess parameters were calculated from the measured density, dielectric constant and refractive index values, respectively. The excess values were also calculated with the Redlich-Kister polynomial and the fitting coefficients and standard deviations are reported. The density of the ternary mixtures increased with the increase in the mole fraction of the solute and decreased with the rise of temperature. The negative dielectric constant values for all the systems indicate a reduction in effective dipoles due to the dipolar self-association of the polar molecules. The FT-IR spectra of all the systems indicate a feeble interaction among the extractants, diluent and modifier.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Pirdashti, M. Ketabi, P. Mobalegholeslam, S. Curteanu, E.N. Dragoi and A. Barani, Int. J. Thermophys., 40, 84 (2019); https://doi.org/10.1007/s10765-019-2545-x
- G. Gonfa, M.A. Bustam, N. Muhammad and S. Ullah, J. Mol. Liq., 211, 734 (2015); https://doi.org/10.1016/j.molliq.2015.07.073
- R. Rives, A. Mialdun, V. Yasnou, V. Shevtsova and A. Coronas, J. Chem. Thermodyn., 160, 106484 (2021); https://doi.org/10.1016/j.jct.2021.106484
- S. Pradhan and S. Mishra, J. Mol. Liq., 279, 317 (2019); https://doi.org/10.1016/j.molliq.2019.01.138
- G.P. Johari and W. Dannhauser, J. Phys. Chem., 72, 3273 (1968); https://doi.org/10.1021/j100855a030
- CH.V.V. Ramana, A.B.V. Kiran Kumar, A.S. Kumar, M.A. Kumar and M.K. Moodley, Thermochim. Acta, 566, 130 (2013); https://doi.org/10.1016/j.tca.2013.05.022
- R.J. Sengwa, Madhvi and Abhilasha, J. Mol. Liq., 123, 92 (2006); https://doi.org/10.1016/j.molliq.2005.03.005
- T. Vishwam and V.R.K. Murthy, J. Mol. Struct., 1035, 46 (2013); https://doi.org/10.1016/j.molstruc.2012.09.025
- R.J. Sengwa and S. Sankhla, J. Non-Cryst. Solids, 353, 4570 (2007); https://doi.org/10.1016/j.jnoncrysol.2007.04.049
- J.P. Martínez Jiménez, J.M. Forniés-Marquina, D.D. Rodríguez and S.O. Lacarra, J. Mol. Liq., 139, 48 (2008); https://doi.org/10.1016/j.molliq.2007.10.011
- Y. Yin, C. Zhu and Y. Ma, J. Chem. Thermodyn., 102, 413 (2016); https://doi.org/10.1016/j.jct.2016.07.041
- K. Binnemans and P.T. Jones, J. Sustain. Metall., 3, 570 (2017); https://doi.org/10.1007/s40831-017-0128-2
- Z. Ying, S. Liu, G. Li, Q. Wei and X. Ren, J. Mol. Liq., 384, 122205 (2023); https://doi.org/10.1016/j.molliq.2023.122205
- H. Matsuda, K. Tochigi, K. Kurihara and T. Funazukuri, J. Solution Chem., 52, 105 (2023); https://doi.org/10.1007/s10953-022-01220-9
- F. Aliajj, A. Hernandez, A. Zeqiraj, N. Syla and T. Arbneshi, Int. J. Thermophys., 45, 3 (2024); https://doi.org/10.1007/s10765-023-03300-4
- A.E. Andreatta, A. Arce, E. Rodil and A. Soto, J. Solution Chem., 39, 371 (2010); https://doi.org/10.1007/s10953-010-9507-z
- U. Domañska, Int. J. Mol. Sci., 11, 1825 (2010); https://doi.org/10.3390/ijms11041825
- H. Gupta, S. Malik, M. Chandrasekhar and V.K. Sharma, J. Therm. Anal. Calorim., 131, 1653 (2018); https://doi.org/10.1007/s10973-017-6587-7
- N. Swain, V. Chakravortty, S.K. Singh and D. Panda, Indian J. Chem., 38A, 1116 (1999).
- M. Mishra, B. Dalai, S.K. Singh, N. Swain and U.N. Dash, Chem. Data Coll., 33, 100708 (2021); https://doi.org/10.1016/j.cdc.2021.100708
- N. Swain, S.K. Singh, D. Panda and V. Chakravortty, J. Mol. Liq., 94, 233 (2001); https://doi.org/10.1016/S0167-7322(01)00271-9
- F. Yang, B. Wang, A. Baimoldina, Y. Song, P. Altemose, C. Kowall and L. Li, RSC Adv., 11, 40033 (2021); https://doi.org/10.1039/D1RA08623E
- A. Mishra, N. Swain, S. Pradhan and S. Mishra, J. Met. Mater. Miner., 31, 44 (2021); https://doi.org/10.55713/jmmm.v31i1.998
- S. Satpathy, S. Pradhan and S. Mishra, J. Radioanal. Nucl. Chem., 313, 531 (2017); https://doi.org/10.1007/s10967-017-5311-1
- V.V. Belova, Y.V. Tsareva, Y.A. Zakhodyaeva, V.K. Ivanov and A.A. Voshkin, Processes, 9, 2222 (2021); https://doi.org/10.3390/pr9122222
- M. Matsumoto, T. Otono and K. Kondo, Sep. Purif. Technol., 24, 337 (2001); https://doi.org/10.1016/S1383-5866(01)00137-X
- R.K. Sahu, S. Pradhan and S. Mishra, Russ. J. Phys. Chem. A. Focus Chem., 96, 2809 (2022); https://doi.org/10.1134/S003602442213012X
- R.K. Sahu, S. Pradhan and S. Mishra, ChemistrySelect, 7, e202203900 (2022); https://doi.org/10.1002/slct.202203900
- S. Fang, X.B. Zuo, X.J. Xu and D.H. Ren, J. Chem. Thermodyn., 68, 281 (2014); https://doi.org/10.1016/j.jct.2013.09.017
- M.N. Hossain, M.M.H. Rocky and S. Akhtar, J. Chem. Eng. Data, 61, 124 (2016); https://doi.org/10.1021/acs.jced.5b00343
- O.G. Sas, G.R. Ivanis, M.Lj. Kijevcanin, B. Gonzalez, A. Dominguez and I.R. Radovic, J. Chem. Thermodyn., 162, 106578 (2021); https://doi.org/10.1016/j.jct.2021.106578
- U.S. Krishnamoorthy, V. Sundarrajan, R. Ambrose and K. Shenbagam, Int. J. Thermodyn., 25, 040 (2022); https://doi.org/10.5541/ijot.1010582
- S. Fang, C.X. Zhao and C.H. He, J. Chem. Eng. Data, 53, 2244 (2008); https://doi.org/10.1021/je8003707
- R. Kachangoon, J. Vichapong, Y. Santaladchaiyakit and N. Teshima, ACS Omega, 8, 21332 (2023); https://doi.org/10.1021/acsomega.3c02919
References
M. Pirdashti, M. Ketabi, P. Mobalegholeslam, S. Curteanu, E.N. Dragoi and A. Barani, Int. J. Thermophys., 40, 84 (2019); https://doi.org/10.1007/s10765-019-2545-x
G. Gonfa, M.A. Bustam, N. Muhammad and S. Ullah, J. Mol. Liq., 211, 734 (2015); https://doi.org/10.1016/j.molliq.2015.07.073
R. Rives, A. Mialdun, V. Yasnou, V. Shevtsova and A. Coronas, J. Chem. Thermodyn., 160, 106484 (2021); https://doi.org/10.1016/j.jct.2021.106484
S. Pradhan and S. Mishra, J. Mol. Liq., 279, 317 (2019); https://doi.org/10.1016/j.molliq.2019.01.138
G.P. Johari and W. Dannhauser, J. Phys. Chem., 72, 3273 (1968); https://doi.org/10.1021/j100855a030
CH.V.V. Ramana, A.B.V. Kiran Kumar, A.S. Kumar, M.A. Kumar and M.K. Moodley, Thermochim. Acta, 566, 130 (2013); https://doi.org/10.1016/j.tca.2013.05.022
R.J. Sengwa, Madhvi and Abhilasha, J. Mol. Liq., 123, 92 (2006); https://doi.org/10.1016/j.molliq.2005.03.005
T. Vishwam and V.R.K. Murthy, J. Mol. Struct., 1035, 46 (2013); https://doi.org/10.1016/j.molstruc.2012.09.025
R.J. Sengwa and S. Sankhla, J. Non-Cryst. Solids, 353, 4570 (2007); https://doi.org/10.1016/j.jnoncrysol.2007.04.049
J.P. Martínez Jiménez, J.M. Forniés-Marquina, D.D. Rodríguez and S.O. Lacarra, J. Mol. Liq., 139, 48 (2008); https://doi.org/10.1016/j.molliq.2007.10.011
Y. Yin, C. Zhu and Y. Ma, J. Chem. Thermodyn., 102, 413 (2016); https://doi.org/10.1016/j.jct.2016.07.041
K. Binnemans and P.T. Jones, J. Sustain. Metall., 3, 570 (2017); https://doi.org/10.1007/s40831-017-0128-2
Z. Ying, S. Liu, G. Li, Q. Wei and X. Ren, J. Mol. Liq., 384, 122205 (2023); https://doi.org/10.1016/j.molliq.2023.122205
H. Matsuda, K. Tochigi, K. Kurihara and T. Funazukuri, J. Solution Chem., 52, 105 (2023); https://doi.org/10.1007/s10953-022-01220-9
F. Aliajj, A. Hernandez, A. Zeqiraj, N. Syla and T. Arbneshi, Int. J. Thermophys., 45, 3 (2024); https://doi.org/10.1007/s10765-023-03300-4
A.E. Andreatta, A. Arce, E. Rodil and A. Soto, J. Solution Chem., 39, 371 (2010); https://doi.org/10.1007/s10953-010-9507-z
U. Domañska, Int. J. Mol. Sci., 11, 1825 (2010); https://doi.org/10.3390/ijms11041825
H. Gupta, S. Malik, M. Chandrasekhar and V.K. Sharma, J. Therm. Anal. Calorim., 131, 1653 (2018); https://doi.org/10.1007/s10973-017-6587-7
N. Swain, V. Chakravortty, S.K. Singh and D. Panda, Indian J. Chem., 38A, 1116 (1999).
M. Mishra, B. Dalai, S.K. Singh, N. Swain and U.N. Dash, Chem. Data Coll., 33, 100708 (2021); https://doi.org/10.1016/j.cdc.2021.100708
N. Swain, S.K. Singh, D. Panda and V. Chakravortty, J. Mol. Liq., 94, 233 (2001); https://doi.org/10.1016/S0167-7322(01)00271-9
F. Yang, B. Wang, A. Baimoldina, Y. Song, P. Altemose, C. Kowall and L. Li, RSC Adv., 11, 40033 (2021); https://doi.org/10.1039/D1RA08623E
A. Mishra, N. Swain, S. Pradhan and S. Mishra, J. Met. Mater. Miner., 31, 44 (2021); https://doi.org/10.55713/jmmm.v31i1.998
S. Satpathy, S. Pradhan and S. Mishra, J. Radioanal. Nucl. Chem., 313, 531 (2017); https://doi.org/10.1007/s10967-017-5311-1
V.V. Belova, Y.V. Tsareva, Y.A. Zakhodyaeva, V.K. Ivanov and A.A. Voshkin, Processes, 9, 2222 (2021); https://doi.org/10.3390/pr9122222
M. Matsumoto, T. Otono and K. Kondo, Sep. Purif. Technol., 24, 337 (2001); https://doi.org/10.1016/S1383-5866(01)00137-X
R.K. Sahu, S. Pradhan and S. Mishra, Russ. J. Phys. Chem. A. Focus Chem., 96, 2809 (2022); https://doi.org/10.1134/S003602442213012X
R.K. Sahu, S. Pradhan and S. Mishra, ChemistrySelect, 7, e202203900 (2022); https://doi.org/10.1002/slct.202203900
S. Fang, X.B. Zuo, X.J. Xu and D.H. Ren, J. Chem. Thermodyn., 68, 281 (2014); https://doi.org/10.1016/j.jct.2013.09.017
M.N. Hossain, M.M.H. Rocky and S. Akhtar, J. Chem. Eng. Data, 61, 124 (2016); https://doi.org/10.1021/acs.jced.5b00343
O.G. Sas, G.R. Ivanis, M.Lj. Kijevcanin, B. Gonzalez, A. Dominguez and I.R. Radovic, J. Chem. Thermodyn., 162, 106578 (2021); https://doi.org/10.1016/j.jct.2021.106578
U.S. Krishnamoorthy, V. Sundarrajan, R. Ambrose and K. Shenbagam, Int. J. Thermodyn., 25, 040 (2022); https://doi.org/10.5541/ijot.1010582
S. Fang, C.X. Zhao and C.H. He, J. Chem. Eng. Data, 53, 2244 (2008); https://doi.org/10.1021/je8003707
R. Kachangoon, J. Vichapong, Y. Santaladchaiyakit and N. Teshima, ACS Omega, 8, 21332 (2023); https://doi.org/10.1021/acsomega.3c02919