Copyright (c) 2024 Geetha D, Priyadharshini G
This work is licensed under a Creative Commons Attribution 4.0 International License.
Development of Platinum-Free Yttrium-Ion-Substituted NiS-Graphene Nanocomposites for DSSC and Photocatalytic Applications
Corresponding Author(s) : D. Geetha
Asian Journal of Chemistry,
Vol. 36 No. 7 (2024): Vol 36 Issue 7, 2024
Abstract
A good catalytic material for the counter electrode is necessary for the dye sensitized solar cell (DSSC), which must have low cost and high power conversion efficiency. Hence, this study aims to develop an efficient graphene based yttrium doped NiS (Y-NiS/GO) nanocomposite as a counter electrode material which is an alternative material to replace platinum in DSSC. For this, NiS/GO and yttrium doped NiS/GO composite were prepared by facile hydrothermal method. The structural, size, shape and physical properties of synthesized samples were characterized by XRD, FESEM-EDX, PL, UV-DRS techniques and to evaluate the properties of the oxidation state of nanocomposite, XPS technique were adopted. The XPS confirm the elements present in sample, further, series resistance (Rs) of yttrium doped NiS/GO composite has been calculated by impedance measurement (EIS). The conversion efficiency of solar cell increases from 2.72% to 3.23%. The same material is used as a nanophoto catalytst for degrading malachite green dye under natural sunlight. The photocatalytic activities of NiS, NiS/GO and Y-NiS/GO was examined and the photodegradation increases from 86% to 97% within 180 min at pH 8.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Munisha, B. Mishra and J. Nanda, J. Rare Earths, 41, 19 (2023); https://doi.org/10.1016/j.jre.2022.03.017
- K.V. Chandekar, M. Shkir, A. Khan, M.A. Sayed, N. Alotaibi, T. Alshahrani, H. Algarni and S. AlFaify, J. Mater. Res. Technol., 15, 2584 (2021); https://doi.org/10.1016/j.jmrt.2021.09.072
- K. Saranya and L. Kavitha, Mater. Today Proc., 51, 1743 (2022); https://doi.org/10.1016/j.matpr.2020.11.910
- J. Shen, R. Cheng, Y. Luo, Y. Chen, X. Chen, Z. Sun and S. Huang, J. Solid State Electrochem., 19, 1045 (2015); https://doi.org/10.1007/s10008-014-2704-8
- T. Shanmugapriya and J. Balavijayalakshmi, Asia-Pac. J. Chem. Eng., 16, e2598 (2021); https://doi.org/10.1002/apj.2598
- S. Li, R. Ma, X. Zhang, X. Li, W. Zhao and H. Zhu, Mater. Des., 118, 163 (2017); https://doi.org/10.1016/j.matdes.2017.01.037
- S.P. Bremner, C. Yi, I. Almansouri, A. Ho-Baillie and M.A. Green, Solar Energy, 135, 750 (2016); https://doi.org/10.1016/j.solener.2016.06.042
- J.A. Castillo-Robles, E. Rocha-Rangel, J.A. Ramírez-de-León, F.C. Caballero-Rico and E.N. Armendáriz-Mireles, J. Compos. Sci., 5, 288 (2021); https://doi.org/10.3390/jcs5110288
- K. Sharma, V. Sharma and S.S. Sharma, Nanoscale Res. Lett., 13, 381 (2018); https://doi.org/10.1186/s11671-018-2760-6
- N. Yao, J. Huang, K. Fu, X. Deng, M. Ding and X. Xu, RSC Adv., 6, 17546 (2016); https://doi.org/10.1039/C5RA27033B
- H. Lian, Z. Hou, M. Shang, D. Geng, Y. Zhang and J. Lin, Energy, 57, 270 (2013); https://doi.org/10.1016/j.energy.2013.05.019
- L.P. D'Souza, R. Shwetharani, V. Amoli, C.A.N. Fernando, A.K. Sinha and R.G. Balakrishna, Mater. Design, 104, 346 (2016); https://doi.org/10.1016/j.matdes.2016.05.007
- M.M. Uplane, S.H. Mujawar, A.I. Inamdar, P.S. Shinde, A.C. Sonavane and P.S. Patil, Appl. Surf. Sci., 253, 9365 (2007); https://doi.org/10.1016/j.apsusc.2007.05.069
- S. Li, R. Ma, X. Zhang, X. Li, W. Zhao and H. Zhu, Mater. Des., 118, 163 (2017); https://doi.org/10.1016/j.matdes.2017.01.037
- R. Viswanath, H.S.B. Naik, Y.K.G. Somalanaik, P.K.P. Neelanjeneallu, K.N. Harish and M.C. Prabhakara, J. Nanotechnol., 2014, 924797 (2014); https://doi.org/10.1155/2014/924797
- N.I. Akpu, A.D. Asiegbu, L.A. Nnanna, I.L. Ikhioya and T.I. Mgbeojedo, Arab. J. Sci. Eng., 47, 7639 (2022); https://doi.org/10.1007/s13369-021-06455-0
- S. Sharma, I. Singh, Natasha and A. Kapoor, Mater. Sci. Semicond. Process., 56, 174 (2016); https://doi.org/10.1016/j.mssp.2016.08.008
- P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.J. Butt, M.I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M.K. Nazeeruddin and M. Grätzel, Nanoscale, 6, 1508 (2014); https://doi.org/10.1039/C3NR05884K
- W. Wang, Y. Liu, J. Sun and L. Gao, J. Alloys Compd., 659, 15 (2016); https://doi.org/10.1016/j.jallcom.2015.10.254
- X. Niu, S. Li, H. Chu and J. Zhou, J. Rare Earths, 29, 225 (2011); https://doi.org/10.1016/S1002-0721(10)60435-8
- W. Zhang, K. Wang, S. Zhu, Y. Li, F. Wang and H. He, Chem. Eng. J., 155, 83 (2009); https://doi.org/10.1016/j.cej.2009.06.039
- K.S. Kumar, C.G. Song, G.M. Bak, G. Heo, M.J. Seong and J.W. Yoon, J. Alloys Compd., 617, 683 (2014); https://doi.org/10.1016/j.jallcom.2014.08.067
- H. Zhang, K. Tan, H. Zheng, Y. Gu and W.F. Zhang, Mater. Chem. Phys., 125, 156 (2011); https://doi.org/10.1016/j.matchemphys.2010.08.087
- B. Zhao, J. Wang, H. Li, Y. Xu, H. Yu, X. Jia, X. Zhang and Y. Hao, ACS Sustain. Chem. Eng., 3, 1518 (2015); https://doi.org/10.1021/acssuschemeng.5b00221
- X. Qu, Y. Hou, M. Liu, L. Shi, M. Zhang, H. Song and F. Du, Results Phys., 6, 1051 (2016); https://doi.org/10.1016/j.rinp.2016.11.021
- Y. Du, X. Zhang, Y. Shi, X. Hou, F. Li, Q. Zhang, Q. Tai, P. Liu and X.-Z. Zhao, J. Alloys Compd., 890, 161909 (2022); https://doi.org/10.1016/j.jallcom.2021.161909
- A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, B. Jin and Y. Tian, Appl. Surf. Sci., 282, 704 (2013); https://doi.org/10.1016/j.apsusc.2013.06.038
- M. Li, Y. Huan, X. Yan, Z. Kang, Y. Guo, Y. Li, X. Liao, R. Zhang and Y. Zhang, ChemSusChem, 11, 171 (2018); https://doi.org/10.1002/cssc.201701911
- C. Zhang, L. Deng, P. Zhang, X. Ren, Y. Li and T. He, Int. J. Electrochem. Sci., 12, 4610 (2017); https://doi.org/10.20964/2017.05.100
- P. O’brien, J.H. Park and J. Waters, Thin Solid Films, 431-432, 502 (2003); https://doi.org/10.1016/S0040-6090(03)00244-X
- A. Gahtar, C. Zaouche, A. Ammari and L. Dahbi, Chalcogenide Lett., 20, 377 (2023); https://doi.org/10.15251/CL.2023.205.377
- K.S. Prasad, S. Prajapati and K. Selvaraj, Korean J. Chem. Eng., 32, 1986 (2015); https://doi.org/10.1007/s11814-015-0041-y
- T. Li, K. Jiang, Y. Li, H. Luo, Z. Wang and Y.Q. Liu, Int. J. Hydrogen Energy, 48, 7337 (2023); https://doi.org/10.1016/j.ijhydene.2022.11.107
- Z. Wang, X. Liao, M. Zhou, F. Huang, K.A. Owusu, J. Li, Z. Lin, Q. Sun, X. Hong, C. Sun, Y. Cheng, Y. Zhao and L. Mai, Energy Environ. Mater., 6, e12409 (2023); https://doi.org/10.1002/eem2.12409
- J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang and Y. Huang, J. Power Sources, 195, 6937 (2010); https://doi.org/10.1016/j.jpowsour.2010.04.081
- H. Seema, Z. Zafar and A. Samreen, Arab. J. Chem., 13, 4978 (2020); https://doi.org/10.1016/j.arabjc.2020.01.020
- L. Lin, S.A. Starostin, X. Ma, S. Li, S.A. Khan and V. Hessel, React. Chem. Eng., 4, 891 (2019); https://doi.org/10.1039/C8RE00357B
- A.J. Abdulghani and W.M. Al-Ogedy, Iraqi J. Sci., 56(2C), 1572 (2015).
- Y. Zhang, S. Yuan, Y. Zhao, H. Wang and C. He, J. Mater. Chem. A Mater. Energy Sustain., 2, 7897 (2014); https://doi.org/10.1039/C4TA01057D
- G. Jerkiewicz, ACS Catal., 12, 2661 (2022); https://doi.org/10.1021/acscatal.1c06040
- A.K. Swarnkar, S. Sahare, N. Chander, R.K. Gangwar, S.V. Bhoraskar and T.M. Bhave, J. Exp. Nanosci., 10, 1001 (2015); https://doi.org/10.1080/17458080.2014.951410
- A.K. Reddy, M. Gurulakshmi, K. Susmitha, M. Raghavender, N. Thota and Y.V. Subbaiah, J. Mater. Sci. Mater. Electron., 31, 4752 (2020); https://doi.org/10.1007/s10854-020-03032-3
- P. Baskaran, K.D. Nisha, S. Harish, S. Prabakaran, M. Navaneethan, J. Archana, S. Ponnusamy, C. Muthamizhchelvan and H. Ikeda, J. Mater. Sci., 56, 4135 (2021); https://doi.org/10.1007/s10853-020-05421-9
- V.D. Dao, D.V. Quang, N.H. Vu, H.H.T. Vu, N.D. Hoa, V.T. Duoc, N.V. Hieu, T.H. Nguyen and N.A. Tran, Vietnam J. Chem., 57, 784 (2019); https://doi.org/10.1002/vjch.2019000114
- T. Shanmugapriya and J. Balavijayalakshmi, J. Cluster Sci., 32, 1277 (2021); https://doi.org/10.1007/s10876-020-01890-9
- E. Emil and S. Gürmen, Mater. Sci. Technol., 34, 1549 (2018); https://doi.org/10.1080/02670836.2018.1490857
- P.C. Nagajyothi, M. Pandurangan, M. Veerappan, D.H. Kim, T.V.M. Sreekanth and J. Shim, Mater. Lett., 216, 58 (2018); https://doi.org/10.1016/j.matlet.2017.12.081
- M. Indhumathy and A. Prakasam, J. Cluster Sci., 31, 91 (2020); https://doi.org/10.1007/s10876-019-01620-w
- T. Fazal, S. Iqbal, M. Shah, B. Ismail, N. Shaheen, H. Alrbyawi, M.M. Al-Anazy, E.B. Elkaeed, H.H. Somaily, R.A. Pashameah, E. Alzahrani and A.-E.A. Farouk, Molecules, 27, 6419 (2022); https://doi.org/10.3390/molecules27196419
- M. Kamalanathan, S. Karuppusamy, R. Sivakumar and R. Gopalakrishnan, J. Mater. Sci., 50, 8029 (2015); https://doi.org/10.1007/s10853-015-9370-9
- B. Noorani, S. Ghasemi and S.R. Hosseini, J. Photochem. Photobiol. Chem., 405, 112966 (2021); https://doi.org/10.1016/j.jphotochem.2020.112966
- C.A. Pandey, S. Ravuri, R. Ramachandran, R. Santhosh, S. Ghosh, S.R. Sitaraman and A.N. Grace, Int. J. Nanosci., 17, 1760021 (2018); https://doi.org/10.1142/S0219581X17600213
References
B. Munisha, B. Mishra and J. Nanda, J. Rare Earths, 41, 19 (2023); https://doi.org/10.1016/j.jre.2022.03.017
K.V. Chandekar, M. Shkir, A. Khan, M.A. Sayed, N. Alotaibi, T. Alshahrani, H. Algarni and S. AlFaify, J. Mater. Res. Technol., 15, 2584 (2021); https://doi.org/10.1016/j.jmrt.2021.09.072
K. Saranya and L. Kavitha, Mater. Today Proc., 51, 1743 (2022); https://doi.org/10.1016/j.matpr.2020.11.910
J. Shen, R. Cheng, Y. Luo, Y. Chen, X. Chen, Z. Sun and S. Huang, J. Solid State Electrochem., 19, 1045 (2015); https://doi.org/10.1007/s10008-014-2704-8
T. Shanmugapriya and J. Balavijayalakshmi, Asia-Pac. J. Chem. Eng., 16, e2598 (2021); https://doi.org/10.1002/apj.2598
S. Li, R. Ma, X. Zhang, X. Li, W. Zhao and H. Zhu, Mater. Des., 118, 163 (2017); https://doi.org/10.1016/j.matdes.2017.01.037
S.P. Bremner, C. Yi, I. Almansouri, A. Ho-Baillie and M.A. Green, Solar Energy, 135, 750 (2016); https://doi.org/10.1016/j.solener.2016.06.042
J.A. Castillo-Robles, E. Rocha-Rangel, J.A. Ramírez-de-León, F.C. Caballero-Rico and E.N. Armendáriz-Mireles, J. Compos. Sci., 5, 288 (2021); https://doi.org/10.3390/jcs5110288
K. Sharma, V. Sharma and S.S. Sharma, Nanoscale Res. Lett., 13, 381 (2018); https://doi.org/10.1186/s11671-018-2760-6
N. Yao, J. Huang, K. Fu, X. Deng, M. Ding and X. Xu, RSC Adv., 6, 17546 (2016); https://doi.org/10.1039/C5RA27033B
H. Lian, Z. Hou, M. Shang, D. Geng, Y. Zhang and J. Lin, Energy, 57, 270 (2013); https://doi.org/10.1016/j.energy.2013.05.019
L.P. D'Souza, R. Shwetharani, V. Amoli, C.A.N. Fernando, A.K. Sinha and R.G. Balakrishna, Mater. Design, 104, 346 (2016); https://doi.org/10.1016/j.matdes.2016.05.007
M.M. Uplane, S.H. Mujawar, A.I. Inamdar, P.S. Shinde, A.C. Sonavane and P.S. Patil, Appl. Surf. Sci., 253, 9365 (2007); https://doi.org/10.1016/j.apsusc.2007.05.069
S. Li, R. Ma, X. Zhang, X. Li, W. Zhao and H. Zhu, Mater. Des., 118, 163 (2017); https://doi.org/10.1016/j.matdes.2017.01.037
R. Viswanath, H.S.B. Naik, Y.K.G. Somalanaik, P.K.P. Neelanjeneallu, K.N. Harish and M.C. Prabhakara, J. Nanotechnol., 2014, 924797 (2014); https://doi.org/10.1155/2014/924797
N.I. Akpu, A.D. Asiegbu, L.A. Nnanna, I.L. Ikhioya and T.I. Mgbeojedo, Arab. J. Sci. Eng., 47, 7639 (2022); https://doi.org/10.1007/s13369-021-06455-0
S. Sharma, I. Singh, Natasha and A. Kapoor, Mater. Sci. Semicond. Process., 56, 174 (2016); https://doi.org/10.1016/j.mssp.2016.08.008
P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.J. Butt, M.I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M.K. Nazeeruddin and M. Grätzel, Nanoscale, 6, 1508 (2014); https://doi.org/10.1039/C3NR05884K
W. Wang, Y. Liu, J. Sun and L. Gao, J. Alloys Compd., 659, 15 (2016); https://doi.org/10.1016/j.jallcom.2015.10.254
X. Niu, S. Li, H. Chu and J. Zhou, J. Rare Earths, 29, 225 (2011); https://doi.org/10.1016/S1002-0721(10)60435-8
W. Zhang, K. Wang, S. Zhu, Y. Li, F. Wang and H. He, Chem. Eng. J., 155, 83 (2009); https://doi.org/10.1016/j.cej.2009.06.039
K.S. Kumar, C.G. Song, G.M. Bak, G. Heo, M.J. Seong and J.W. Yoon, J. Alloys Compd., 617, 683 (2014); https://doi.org/10.1016/j.jallcom.2014.08.067
H. Zhang, K. Tan, H. Zheng, Y. Gu and W.F. Zhang, Mater. Chem. Phys., 125, 156 (2011); https://doi.org/10.1016/j.matchemphys.2010.08.087
B. Zhao, J. Wang, H. Li, Y. Xu, H. Yu, X. Jia, X. Zhang and Y. Hao, ACS Sustain. Chem. Eng., 3, 1518 (2015); https://doi.org/10.1021/acssuschemeng.5b00221
X. Qu, Y. Hou, M. Liu, L. Shi, M. Zhang, H. Song and F. Du, Results Phys., 6, 1051 (2016); https://doi.org/10.1016/j.rinp.2016.11.021
Y. Du, X. Zhang, Y. Shi, X. Hou, F. Li, Q. Zhang, Q. Tai, P. Liu and X.-Z. Zhao, J. Alloys Compd., 890, 161909 (2022); https://doi.org/10.1016/j.jallcom.2021.161909
A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, B. Jin and Y. Tian, Appl. Surf. Sci., 282, 704 (2013); https://doi.org/10.1016/j.apsusc.2013.06.038
M. Li, Y. Huan, X. Yan, Z. Kang, Y. Guo, Y. Li, X. Liao, R. Zhang and Y. Zhang, ChemSusChem, 11, 171 (2018); https://doi.org/10.1002/cssc.201701911
C. Zhang, L. Deng, P. Zhang, X. Ren, Y. Li and T. He, Int. J. Electrochem. Sci., 12, 4610 (2017); https://doi.org/10.20964/2017.05.100
P. O’brien, J.H. Park and J. Waters, Thin Solid Films, 431-432, 502 (2003); https://doi.org/10.1016/S0040-6090(03)00244-X
A. Gahtar, C. Zaouche, A. Ammari and L. Dahbi, Chalcogenide Lett., 20, 377 (2023); https://doi.org/10.15251/CL.2023.205.377
K.S. Prasad, S. Prajapati and K. Selvaraj, Korean J. Chem. Eng., 32, 1986 (2015); https://doi.org/10.1007/s11814-015-0041-y
T. Li, K. Jiang, Y. Li, H. Luo, Z. Wang and Y.Q. Liu, Int. J. Hydrogen Energy, 48, 7337 (2023); https://doi.org/10.1016/j.ijhydene.2022.11.107
Z. Wang, X. Liao, M. Zhou, F. Huang, K.A. Owusu, J. Li, Z. Lin, Q. Sun, X. Hong, C. Sun, Y. Cheng, Y. Zhao and L. Mai, Energy Environ. Mater., 6, e12409 (2023); https://doi.org/10.1002/eem2.12409
J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang and Y. Huang, J. Power Sources, 195, 6937 (2010); https://doi.org/10.1016/j.jpowsour.2010.04.081
H. Seema, Z. Zafar and A. Samreen, Arab. J. Chem., 13, 4978 (2020); https://doi.org/10.1016/j.arabjc.2020.01.020
L. Lin, S.A. Starostin, X. Ma, S. Li, S.A. Khan and V. Hessel, React. Chem. Eng., 4, 891 (2019); https://doi.org/10.1039/C8RE00357B
A.J. Abdulghani and W.M. Al-Ogedy, Iraqi J. Sci., 56(2C), 1572 (2015).
Y. Zhang, S. Yuan, Y. Zhao, H. Wang and C. He, J. Mater. Chem. A Mater. Energy Sustain., 2, 7897 (2014); https://doi.org/10.1039/C4TA01057D
G. Jerkiewicz, ACS Catal., 12, 2661 (2022); https://doi.org/10.1021/acscatal.1c06040
A.K. Swarnkar, S. Sahare, N. Chander, R.K. Gangwar, S.V. Bhoraskar and T.M. Bhave, J. Exp. Nanosci., 10, 1001 (2015); https://doi.org/10.1080/17458080.2014.951410
A.K. Reddy, M. Gurulakshmi, K. Susmitha, M. Raghavender, N. Thota and Y.V. Subbaiah, J. Mater. Sci. Mater. Electron., 31, 4752 (2020); https://doi.org/10.1007/s10854-020-03032-3
P. Baskaran, K.D. Nisha, S. Harish, S. Prabakaran, M. Navaneethan, J. Archana, S. Ponnusamy, C. Muthamizhchelvan and H. Ikeda, J. Mater. Sci., 56, 4135 (2021); https://doi.org/10.1007/s10853-020-05421-9
V.D. Dao, D.V. Quang, N.H. Vu, H.H.T. Vu, N.D. Hoa, V.T. Duoc, N.V. Hieu, T.H. Nguyen and N.A. Tran, Vietnam J. Chem., 57, 784 (2019); https://doi.org/10.1002/vjch.2019000114
T. Shanmugapriya and J. Balavijayalakshmi, J. Cluster Sci., 32, 1277 (2021); https://doi.org/10.1007/s10876-020-01890-9
E. Emil and S. Gürmen, Mater. Sci. Technol., 34, 1549 (2018); https://doi.org/10.1080/02670836.2018.1490857
P.C. Nagajyothi, M. Pandurangan, M. Veerappan, D.H. Kim, T.V.M. Sreekanth and J. Shim, Mater. Lett., 216, 58 (2018); https://doi.org/10.1016/j.matlet.2017.12.081
M. Indhumathy and A. Prakasam, J. Cluster Sci., 31, 91 (2020); https://doi.org/10.1007/s10876-019-01620-w
T. Fazal, S. Iqbal, M. Shah, B. Ismail, N. Shaheen, H. Alrbyawi, M.M. Al-Anazy, E.B. Elkaeed, H.H. Somaily, R.A. Pashameah, E. Alzahrani and A.-E.A. Farouk, Molecules, 27, 6419 (2022); https://doi.org/10.3390/molecules27196419
M. Kamalanathan, S. Karuppusamy, R. Sivakumar and R. Gopalakrishnan, J. Mater. Sci., 50, 8029 (2015); https://doi.org/10.1007/s10853-015-9370-9
B. Noorani, S. Ghasemi and S.R. Hosseini, J. Photochem. Photobiol. Chem., 405, 112966 (2021); https://doi.org/10.1016/j.jphotochem.2020.112966
C.A. Pandey, S. Ravuri, R. Ramachandran, R. Santhosh, S. Ghosh, S.R. Sitaraman and A.N. Grace, Int. J. Nanosci., 17, 1760021 (2018); https://doi.org/10.1142/S0219581X17600213