Copyright (c) 2024 Samson Nesaraj Arputharaj, Akash Ravi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molybdate-based Nanocrystalline Materials for Efficient Environmental Remediation and Electrochemical Energy Conversion Applications: An Update
Corresponding Author(s) : Arputharaj Samson Nesaraj
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
Molybdate-based nanocrystalline materials have been considered as promising candidates in various energy and environmental remediation applications owing to their distinct characteristics and versatile functionalities. This article furnishes a comprehensive overview of recent advancements that have been made in synthesis techniques, characterization and applications of molybdate-based nanocrystalline materials in the realm of energy transformation and ecological restoration technologies. Molybdate-based nanomaterials may be classified as sulfides, phosphates and mixed-metal compounds which can be synthesized effectively by wet chemical method. The mechanisms underlying the enhanced performance of molybdate-based nanocrystalline materials are interpreted, along with strategies for improving their efficiency and stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, R. Yuvakkumar, M. Thambidurai and G. Ravi, J. Alloys Compd., 853, 157060 (2021); https://doi.org/10.1016/j.jallcom.2020.157060
- A.I. Osman, L. Chen, M. Yang, G. Msigwa, M. Farghali, S. Fawzy, D.W. Rooney and P.-S. Yap, Environ. Chem. Lett., 21, 741 (2023); https://doi.org/10.1007/s10311-022-01532-8
- P. Xiong, J. Zhu, L. Zhang and X. Wang, Nanoscale Horiz., 1, 340 (2016); https://doi.org/10.1039/C5NH00134J
- M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S.S. Al-Deyab and Y. Lai, J. Mater. Chem. A Mater. Energy Sustain., 4, 6772 (2016); https://doi.org/10.1039/C5TA09323F
- F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2018); https://doi.org/10.3390/ijerph15010016
- E.G. Snyder, T.H. Watkins, P.A. Solomon, E.D. Thoma, R.W. Williams, G.S.W. Hagler, D. Shelow, D.A. Hindin, V.J. Kilaru and P.W. Preuss, Environ. Sci. Technol., 47, 11369 (2013); https://doi.org/10.1021/es4022602
- X. Hu, W. Xiong, W. Wang, S. Qin, H. Cheng, Y. Zeng, B. Wang and Z. Zhu, ACS Sustain. Chem. Eng., 4, 1201 (2016); https://doi.org/10.1021/acssuschemeng.5b01263
- S. Ling, R. Yuan, Y. Chai and T. Zhang, Bioprocess Biosyst. Eng., 32, 407 (2009); https://doi.org/10.1007/s00449-008-0260-2
- T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen and X. Sun, Small, 12, 3748 (2016); https://doi.org/10.1002/smll.201601049
- C. Xue, X. Yan, S. Ding and G. Yang, RSC Adv., 6, 68653 (2016); https://doi.org/10.1039/C6RA13269C
- C. Vinayagasundaram, A.S. Nesaraj and P. Sivaranjana, J. Indian Chem. Soc., 100, 100908 (2023); https://doi.org/10.1016/j.jics.2023.100908
- M.A. Shaikh, Pakistan Textile J., 58, 48 (2009).
- A. Subramani and J.G. Jacangelo, Water Res., 75, 164 (2015); https://doi.org/10.1016/j.watres.2015.02.032
- W.L. Ang, A.W. Mohammad, N. Hilal and C.P. Leo, Desalination, 363, 2 (2015); https://doi.org/10.1016/j.desal.2014.03.008
- K.A. Altammar, Front. Microbiol., 14, 1155622 (2023); https://doi.org/10.3389/fmicb.2023.1155622
- R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra and R.N. Bharagava, J. Environ. Chem. Eng., 9, 105012 (2021); https://doi.org/10.1016/j.jece.2020.105012
- S. Rasalingam, C.M. Wu and R.T. Koodali, ACS Appl. Mater. Interfaces, 7, 4368 (2015); https://doi.org/10.1021/am508883f
- S.J. Pradeeba, K. Sampath and A. Ramadevi, Cluster Comput., 22(S2), 3893 (2019); https://doi.org/10.1007/s10586-018-2505-4
- V. Selvaraj, T. Swarna Karthika, C. Mansiya and M. Alagar, J. Mol. Struct., 1224, 129195 (2021); https://doi.org/10.1016/j.molstruc.2020.129195
- B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
- T. Rasheed, M. Adeel, F. Nabeel, M. Bilal and H.M. Iqbal, Sci. Total Environ., 688, 299 (2019); https://doi.org/10.1016/j.scitotenv.2019.06.200
- I. Ali, Chem. Rev., 112, 5073 (2012); https://doi.org/10.1021/cr300133d
- I. Khan, K. Saeed, N. Ali, I. Khan, B. Zhang and M. Sadiq, J. Environ. Chem. Eng., 8, 104364 (2020); https://doi.org/10.1016/j.jece.2020.104364
- P.C. Nagajyothi, S.V. Prabhakar Vattikuti, K.C. Devarayapalli, K. Yoo, J. Shim and T.V.M. Sreekanth, Crit. Rev. Environ. Sci. Technol., 50, 2617 (2020); https://doi.org/10.1080/10643389.2019.1705103
- A. Masiha, N. Mahboobi Soofiani, E. Ebrahimi, M. Kadivar and M.R. Karimi, Springerplus, 2, 1 (2013); https://doi.org/10.1186/2193-1801-2-1
- H.D. Burrows, M. Canle L, J.A. Santaballa and S. Steenken, J. Photochem. Photobiol. B, 67, 71 (2002); https://doi.org/10.1016/S1011-1344(02)00277-4
- F.W. Sindelar, L.F. Silva, V.R. Machado, L.C. dos Santos and S. Stülp, Sep. Sci. Technol., 50, 142 (2015); https://doi.org/10.1080/01496395.2014.947519
- D. Ayodhya and G. Veerabhadram, Mater. Today Energy, 9, 83 (2018); https://doi.org/10.1016/j.mtener.2018.05.007
- Q. Yun, L. Li, Z. Hu, Q. Lu, B. Chen and H. Zhang, Adv. Mater., 32, 1903826 (2020); https://doi.org/10.1002/adma.201903826
- N. Kumar, S.-B. Kim, S.-Y. Lee and S.-J. Park, Nanomaterials, 12, 3708 (2022); https://doi.org/10.3390/nano12203708
- J.B. Goodenough, Energy Storage Mater., 1, 158 (2015); https://doi.org/10.1016/j.ensm.2015.07.001
- M. Armand and J.M. Tarascon, Nature, 451, 652 (2008); https://doi.org/10.1038/451652a
- N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho and P.G. Bruce, Angew. Chem. Int. Ed., 51, 9994 (2012); https://doi.org/10.1002/anie.201201429
- J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin and Z.X. Shen, Adv. Sci., 5, 1700322 (2018); https://doi.org/10.1002/advs.201700322
- S. Li, Y. Luo, W. Lv, W. Yu, S. Wu, P. Hou, Q. Yang, Q. Meng, C. Liu and H.-M. Cheng, Adv. Energy Mater., 1, 486 (2011); https://doi.org/10.1002/aenm.201100001
- Y. Ahoutou, A. Ilinca and M. Issa, Energies, 15, 1579 (2022); https://doi.org/10.3390/en15041579
- M.Y. Worku, Sustainability, 14, 5985 (2022); https://doi.org/10.3390/su14105985
- M.S. Zantye, A. Gandhi, Y. Wang, S.P. Vudata, D. Bhattacharyya and M.M.F. Hasan, Energy Environ. Sci., 15, 4119 (2022); https://doi.org/10.1039/D2EE00771A
- P.E. Lokhande, U.S. Chavan and A. Pandey, Electrochem. Energy Rev., 3, 155 (2020); https://doi.org/10.1007/s41918-019-00057-z
- J. Han, W. Wei, C. Zhang, Y. Tao, W. Lv, G. Ling, F. Kang and Q.H. Yang, Electrochem. Energy Rev., 1, 139 (2018); https://doi.org/10.1007/s41918-018-0006-z
- J.L. Gunjakar, A.I. Inamdar, B. Hou, S.N. Cha, S.M. Pawar, A.A. Abu Talha, H.S. Chavan, J. Kim, S. Cho, S. Lee, Y. Jo, H. Kim and H. Im, Nanoscale, 10, 8953 (2018); https://doi.org/10.1039/C7NR09626G
- Z. Gao, Y. Zhang, N. Song and X. Li, Mater. Res. Lett., 5, 69 (2017); https://doi.org/10.1080/21663831.2016.1250834
- D.P. Dubal, N.R. Chodankar, D.H. Kim and P. Gomez-Romero, Chem. Soc. Rev., 47, 2065 (2018); https://doi.org/10.1039/C7CS00505A
- Q.S. Song, Y.Y. Li and S.L.I. Chan, J. Appl. Electrochem., 35, 157 (2005); https://doi.org/10.1007/s10800-004-6301-x
- L. Cao, F. Xu, Y.Y. Liang and H.L. Li, Adv. Mater., 16, 1853 (2004); https://doi.org/10.1002/adma.200400183
- S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim and J.H. Lee, J. Mater. Chem., 22, 767 (2012); https://doi.org/10.1039/C1JM14468E
- J. Yuan, S. Tang, Z. Zhu, X. Qin, R. Qu, Y. Deng, L. Wu, J. Li and G.M. Haarberg, J. Mater. Sci. Mater. Electron., 28, 18022 (2017); https://doi.org/10.1007/s10854-017-7745-1
- R. Wang, Y. Sui, S. Huang, Y. Pu and P. Cao, Chem. Eng. J., 331, 527 (2018); https://doi.org/10.1016/j.cej.2017.09.004
- S.M. Chen, R. Ramachandran, V. Mani and R. Saraswathi, Int. J. Electrochem. Sci., 9, 4072 (2014); https://doi.org/10.1016/S1452-3981(23)08076-8
- L.L. Zhang and X.S. Zhao, Chem. Soc. Rev., 38, 2520 (2009); https://doi.org/10.1039/b813846j
- Y.M. Vol’fkovich, A.A. Mikhalin, D.A. Bograchev and V.E. Sosenkin, Russ. J. Electrochem., 48, 424 (2012); https://doi.org/10.1134/S1023193512030159
- R. Kötz and M.J.E.A. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
- Z. Yu, L. Tetard, L. Zhai and J. Thomas, Energy Environ. Sci., 8, 702 (2015); https://doi.org/10.1039/C4EE03229B
- A. Pramitha and Y. Raviprakash, J. Energy Storage, 49, 104120 (2022); https://doi.org/10.1016/j.est.2022.104120
- P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008); https://doi.org/10.1038/nmat2297
- H. Gleiter, Acta Mater., 48, 1 (2000); https://doi.org/10.1016/S1359-6454(99)00285-2
- X. Shan, J. Wu, X. Zhang, L. Wang, J. Yang, Z. Chen, J. Yu and X. Wang, Cell Rep. Phys. Sci., 2, 100654 (2021); https://doi.org/10.1016/j.xcrp.2021.100654
- L. Zhang, S. Zheng, L. Wang, H. Tang, H. Xue, G. Wang and H. Pang, Small, 13, 1700917 (2017); https://doi.org/10.1002/smll.201700917
- G. Kianpour, F. Soofivand, M. Badiei, M. Salavati-Niasari and M. Hamadanian, J. Mater. Sci. Mater. Electron., 27, 10244 (2016); https://doi.org/10.1007/s10854-016-5103-3
- A. Alborzi and S. Khademolhoseini, J. Mater. Sci. Mater. Electron., 27, 3963 (2016); https://doi.org/10.1007/s10854-015-4249-8
- B. Ramulu, S. Chandra Sekhar, G. Nagaraju and J.S. Yu, Appl. Surf. Sci., 515, 146023 (2020); https://doi.org/10.1016/j.apsusc.2020.146023
- Y. Li, S. Zhang, M. Ma, X. Mu, Y. Zhang, J. Du, Q. Hu, B. Huang, X. Hua, G. Liu, E. Xie and Z. Zhang, Chem. Eng. J., 372, 452 (2019); https://doi.org/10.1016/j.cej.2019.04.167
- M. Dhanasekar, S. Ratha, C.S. Rout and S.V. Bhat, J. Environ. Chem. Eng., 5, 2997 (2017); https://doi.org/10.1016/j.jece.2017.05.054
- R. Ghanbari and S.R. Ghorbani, J. Energy Storage, 60, 106670 (2023); https://doi.org/10.1016/j.est.2023.106670
- S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab and M. Mehrzad, J. Mater. Sci. Mater. Electron., 27, 5758 (2016); https://doi.org/10.1007/s10854-016-4489-2
- A. Sathiyan, S. Rajkumar, S. Dhineshkumar and J.P. Merlin, J. Indus. Eng. Chem., 129, 521 (2024); https://doi.org/10.1016/j.jiec.2023.09.011
- J. Acosta-Vergara, R.A. Torres-Palma and Y. Ávila-Torres, MethodsX, 11, 102258 (2023); https://doi.org/10.1016/j.mex.2023.102258
- R. Karthik, N. Karikalan, S.-M. Chen, J.V. Kumar, C. Karuppiah and V. Muthuraj, J. Catalysis, 352, 606 (2017); https://doi.org/10.1016/j.jcat.2017.06.001
- W. Zhang, P. Xing, C. Zhang, J. Zhang, X. Hu, L. Zhao and Y. He, Adv. Powder Technol., 33, 103573 (2022); https://doi.org/10.1016/j.apt.2022.103573
- A. Gholami and M. Maddahfar, J. Mater. Sci. Mater. Electron., 27, 6773 (2016); https://doi.org/10.1007/s10854-016-4627-x
- M. Bazarganipour, Ceram. Int., 42, 12617 (2016); https://doi.org/10.1016/j.ceramint.2016.04.151
- B.J. Rani, S. Swathi, R. Yuvakkumar, G. Ravi, R. Rajalakshmi, A.G. Al-Sehemi and D. Velauthapillai, J. Energy Storage, 56, 105945 (2022); https://doi.org/10.1016/j.est.2022.105945
- J. Bhagwan, S.K. Hussain and J.S. Yu, ACS Sustain. Chem. Eng., 7, 12340 (2019); https://doi.org/10.1021/acsanm.3c06056
- S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani and A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron., 27, 4351 (2016); https://doi.org/10.1007/s10854-016-4303-1
- H.S. Chawda, A.K. Rai, R. Rathore, S.C. Ameta and R. Ameta, J. Indian Chem. Soc., 97, 2397 (2020).
- H.S. Chawda, J. Bhatt, R. Rathore, S.C. Ameta and R. Ameta, J. Adv. Chem. Sci., 7, 725 (2021); https://doi.org/10.30799/jacs.237.21070202
- H. Cao, N. Wu, Y. Liu, S. Wang, W. Du and J. Liu, Electrochim. Acta, 225, 605 (2017); https://doi.org/10.1016/j.electacta.2017.01.021
- H. Li, H. Xuan, J. Gao, T. Liang, X. Han, Y. Guan, J. Yang, P. Han and Y. Du, Electrochim. Acta, 312, 213 (2019); https://doi.org/10.1016/j.electacta.2019.05.008
- F. Namvar, F. Beshkar and M. Salavati-Niasari, J. Mater. Sci. Mater. Electron., 28, 7962 (2017); https://doi.org/10.1007/s10854-017-6499-0
- Z. Xu, S. Sun, Y. Han, Z. Wei, Y. Cheng, S. Yin and W. Cui, ACS Appl. Energy Mater., 3, 5393 (2020); https://doi.org/10.1021/acsaem.0c00393
- G.K. Veerasubramani, K. Krishnamoorthy, R. Sivaprakasam and S.J. Kim, Mater. Chem. Phys., 147, 836 (2014); https://doi.org/10.1016/j.matchemphys.2014.06.028
- M. Kumar, R. Singh, H. Khajuria and H.N. Sheikh, J. Mater. Sci. Mater. Electron., 28, 9423 (2017); https://doi.org/10.1007/s10854-017-6684-1
- S. Hajebi and A. Abedini, J. Mater. Sci. Mater. Electron., 27, 4489 (2016); https://doi.org/10.1007/s10854-016-4322-y
- D. Yu, Z. Zhang, Y. Teng, Y. Meng, X. Zhao and X. Liu, J. Alloys Compd., 835, 155244 (2020); https://doi.org/10.1016/j.jallcom.2020.155244
- S. Liu, Y. Yin, D. Ni, K.S. Hui, K.N. Hui, S. Lee, C.-Y. Ouyang and S.C. Jun, Energy Storage Mater., 19, 186 (2019); https://doi.org/10.1016/j.ensm.2018.10.022
- G. Zhao, Y. Chen, P. Sun, S. Hao, X. Wang, G. Qu, Y. Xing and X. Xu, Nanoscale, 12, 17849 (2020); https://doi.org/10.1039/D0NR05377E
- R. Oztekin and D.T. Sponza, J. Materi. Sci. Manufact. Res., 4, 2 (2023); https://doi.org/10.47363/JMSMR/2023(4)149
- M. Farahpour and M. Arvand, J. Energy Storage, 40, 102742 (2021); https://doi.org/10.1016/j.est.2021.102742
- K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal and T. Alagesan, Ceram. Int., 44, 20075 (2018); https://doi.org/10.1016/j.ceramint.2018.07.282
- G. Singh, V.S. Bhargava and M. Sharma, AIP Conf. Proc., 1961, 030004 (2018); https://doi.org/10.1063/1.5035206
- G.K. Veerasubramani, K. Krishnamoorthy and S.J. Kim, RSC Adv., 5, 16319 (2015); https://doi.org/10.1039/C4RA15070H
- J.V. Kumar, R. Karthik, S.M. Chen, V. Muthuraj and C. Karuppiah, Sci. Rep., 6, 34149 (2016); https://doi.org/10.1038/srep34149
- J.J. William, S. Balakrishnan, M. Murugesan, M. Gopalan, A.J. Britten and M. Mkandawire, Mater. Adv., 3, 8288 (2022); https://doi.org/10.1039/D2MA00708H
- L. Yang, J. Wang, Y. Wan, Y. Li, H. Xie, H. Cheng and H.J. Seo, J. Alloys Compd., 664, 756 (2016); https://doi.org/10.1016/j.jallcom.2015.10.037
- H.Y. He, P. Chen, L.Y. Cao and J. Lu, Res. Chem. Intermed., 40, 1525 (2014); https://doi.org/10.1007/s11164-013-1057-8
- M. Rosic, A. Zarubica, A. Šaponjic, B. Babic, J. Zagorac, D. Jordanov and B. Matovic, Mater. Res. Bull., 98, 111 (2018); https://doi.org/10.1016/j.materresbull.2017.10.015
- Y. Li, B. Weisheng and G. Kaijie, 2009 International Conference on Energy and Environment Technology, Guilin, China, pp. 672-675 (2009).
- C.C. Chen, Y.R. Jiang and K.H. Chang, Adv. Mater. Res., 557, 761 (2012); https://doi.org/10.4028/www.scientific.net/AMR.557-559.761
- Y.R. Jiang, W.W. Lee, K.T. Chen, M.C. Wang, K.H. Chang and C.C. Chen, J. Taiwan Inst. Chem. Eng., 45, 207 (2014); https://doi.org/10.1016/j.jtice.2013.05.007
- L. Lv, W. Tong, Y. Zhang, Y. Su and X. Wang, J. Nanosci. Nanotechnol., 11, 9506 (2011); https://doi.org/10.1166/jnn.2011.5269
- L. Zhang, X.F. Cao, Y.L. Ma, X.T. Chen and Z.L. Xue, New J. Chem., 34, 2027 (2010); https://doi.org/10.1039/c0nj00048e
- L. Wang, X. Huang, M. Han, L. Lyu, T. Li, Y. Gao, Q. Zeng and C. Hu, Appl. Catal. B, 257, 117904 (2019); https://doi.org/10.1016/j.apcatb.2019.117904
- X. Zhao, T. Xu, W. Yao and Y. Zhu, Appl. Surf. Sci., 255, 8036 (2009); https://doi.org/10.1016/j.apsusc.2009.05.010
- Y. Hao, X. Dong, S. Zhai, X. Wang, H. Ma and X. Zhang, RSC Adv., 6, 35709 (2016); https://doi.org/10.1039/C6RA05796A
- J. Bai, Y. Li, J. Liu and L. Liu, Micropor. Mesopor. Mater., 240, 91 (2017); https://doi.org/10.1016/j.micromeso.2016.11.008
- W. Yin, W. Wang and S. Sun, Catal. Commun., 11, 647 (2010); https://doi.org/10.1016/j.catcom.2010.01.014
- C. Guo, J. Xu, S. Wang, L. Li, Y. Zhang and X. Li, CrystEngComm, 14, 3602 (2012); https://doi.org/10.1039/c2ce06757a
- T. Chankhanittha, V. Somaudon, J. Watcharakitti, V. Piyavarakorn and S. Nanan, Mater. Lett., 258, 126764 (2020); https://doi.org/10.1016/j.matlet.2019.126764
- J. Bai, X. Li, Z. Hao and L. Liu, J. Colloid Interface Sci., 560, 510 (2020); https://doi.org/10.1016/j.jcis.2019.10.013
- M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun and Y. Liu, J. Hazard. Mater., 225-226, 155 (2012); https://doi.org/10.1016/j.jhazmat.2012.05.006
- Y. Sun, Z. Liu, X. Zheng, C. Wang, J. Wang, M. Jiang, D. Jiang and J. Liu, Compos., Part B Eng., 249, 110409 (2023); https://doi.org/10.1016/j.compositesb.2022.110409
- S. Jiang, M. Pang, M. Pang, J. Song, R. Wang, H. Yang, Q. Pan, W. He, M. Mao and S. Li, Colloids Surf. A Physicochem. Eng. Asp., 656, 130536 (2023); https://doi.org/10.1016/j.colsurfa.2022.130536
- A.B. Appiagyei, L. Asiedua-Ahenkorah, C. Bathula, H.S. Kim, S.S. Han, K.M. Rao and D.A. Anang, J. Energy Storage, 58, 106383 (2023); https://doi.org/10.1016/j.est.2022.106383
- M.A. Mohammadi, M. Arvand and S. Daneshvar, J. Electroanal. Chem., 904, 115934 (2022); https://doi.org/10.1016/j.jelechem.2021.115934
- W. He, S. Jiang, M. Pang, J. Li, M. Pang, M. Mao, R. Wang, H. Yang, Q. Pan and J. Zhao, Colloids Surf. A Physicochem. Eng. Asp., 660, 130883 (2023); https://doi.org/10.1016/j.colsurfa.2022.130883
- J. Li, Y. Zou, L. Jin, F. Xu, L. Sun and C. Xiang, J. Energy Storage, 50, 104639 (2022); https://doi.org/10.1016/j.est.2022.104639
- Z. Cheng, Z. Ren, W. Ye, G. Li, X. Huang, Y. Lin, F. Xiong and H. Zhang, J. Energy Storage, 56, 105941 (2022); https://doi.org/10.1016/j.est.2022.105941
- S. Cui, Q. Hu, K. Sun, X. Wang, F. Wang, H.A. Hamouda, H. Peng and G. Ma, ACS Appl. Nano Mater., 5, 6181 (2022); https://doi.org/10.1021/acsanm.2c00131
- Y. Gao, J. Tao, J. Li, H. Xie, Y. Li, T. Wang and C. Zhang, J. Alloys Compd., 925, 166705 (2022); https://doi.org/10.1016/j.jallcom.2022.166705
- R. Liang, Y. Du, J. Wu, X. Li, T. Liang, J. Yuan, P. Xiao and J. Chen, J. Solid State Chem., 307, 122845 (2022); https://doi.org/10.1016/j.jssc.2021.122845
- H.M. El Sharkawy, A.M. Mohamed, M. Ramadan and N.K. Allam, J. Energy Storage, 54, 105272 (2022); https://doi.org/10.1016/j.est.2022.105272
References
S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, R. Yuvakkumar, M. Thambidurai and G. Ravi, J. Alloys Compd., 853, 157060 (2021); https://doi.org/10.1016/j.jallcom.2020.157060
A.I. Osman, L. Chen, M. Yang, G. Msigwa, M. Farghali, S. Fawzy, D.W. Rooney and P.-S. Yap, Environ. Chem. Lett., 21, 741 (2023); https://doi.org/10.1007/s10311-022-01532-8
P. Xiong, J. Zhu, L. Zhang and X. Wang, Nanoscale Horiz., 1, 340 (2016); https://doi.org/10.1039/C5NH00134J
M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S.S. Al-Deyab and Y. Lai, J. Mater. Chem. A Mater. Energy Sustain., 4, 6772 (2016); https://doi.org/10.1039/C5TA09323F
F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2018); https://doi.org/10.3390/ijerph15010016
E.G. Snyder, T.H. Watkins, P.A. Solomon, E.D. Thoma, R.W. Williams, G.S.W. Hagler, D. Shelow, D.A. Hindin, V.J. Kilaru and P.W. Preuss, Environ. Sci. Technol., 47, 11369 (2013); https://doi.org/10.1021/es4022602
X. Hu, W. Xiong, W. Wang, S. Qin, H. Cheng, Y. Zeng, B. Wang and Z. Zhu, ACS Sustain. Chem. Eng., 4, 1201 (2016); https://doi.org/10.1021/acssuschemeng.5b01263
S. Ling, R. Yuan, Y. Chai and T. Zhang, Bioprocess Biosyst. Eng., 32, 407 (2009); https://doi.org/10.1007/s00449-008-0260-2
T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen and X. Sun, Small, 12, 3748 (2016); https://doi.org/10.1002/smll.201601049
C. Xue, X. Yan, S. Ding and G. Yang, RSC Adv., 6, 68653 (2016); https://doi.org/10.1039/C6RA13269C
C. Vinayagasundaram, A.S. Nesaraj and P. Sivaranjana, J. Indian Chem. Soc., 100, 100908 (2023); https://doi.org/10.1016/j.jics.2023.100908
M.A. Shaikh, Pakistan Textile J., 58, 48 (2009).
A. Subramani and J.G. Jacangelo, Water Res., 75, 164 (2015); https://doi.org/10.1016/j.watres.2015.02.032
W.L. Ang, A.W. Mohammad, N. Hilal and C.P. Leo, Desalination, 363, 2 (2015); https://doi.org/10.1016/j.desal.2014.03.008
K.A. Altammar, Front. Microbiol., 14, 1155622 (2023); https://doi.org/10.3389/fmicb.2023.1155622
R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra and R.N. Bharagava, J. Environ. Chem. Eng., 9, 105012 (2021); https://doi.org/10.1016/j.jece.2020.105012
S. Rasalingam, C.M. Wu and R.T. Koodali, ACS Appl. Mater. Interfaces, 7, 4368 (2015); https://doi.org/10.1021/am508883f
S.J. Pradeeba, K. Sampath and A. Ramadevi, Cluster Comput., 22(S2), 3893 (2019); https://doi.org/10.1007/s10586-018-2505-4
V. Selvaraj, T. Swarna Karthika, C. Mansiya and M. Alagar, J. Mol. Struct., 1224, 129195 (2021); https://doi.org/10.1016/j.molstruc.2020.129195
B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
T. Rasheed, M. Adeel, F. Nabeel, M. Bilal and H.M. Iqbal, Sci. Total Environ., 688, 299 (2019); https://doi.org/10.1016/j.scitotenv.2019.06.200
I. Ali, Chem. Rev., 112, 5073 (2012); https://doi.org/10.1021/cr300133d
I. Khan, K. Saeed, N. Ali, I. Khan, B. Zhang and M. Sadiq, J. Environ. Chem. Eng., 8, 104364 (2020); https://doi.org/10.1016/j.jece.2020.104364
P.C. Nagajyothi, S.V. Prabhakar Vattikuti, K.C. Devarayapalli, K. Yoo, J. Shim and T.V.M. Sreekanth, Crit. Rev. Environ. Sci. Technol., 50, 2617 (2020); https://doi.org/10.1080/10643389.2019.1705103
A. Masiha, N. Mahboobi Soofiani, E. Ebrahimi, M. Kadivar and M.R. Karimi, Springerplus, 2, 1 (2013); https://doi.org/10.1186/2193-1801-2-1
H.D. Burrows, M. Canle L, J.A. Santaballa and S. Steenken, J. Photochem. Photobiol. B, 67, 71 (2002); https://doi.org/10.1016/S1011-1344(02)00277-4
F.W. Sindelar, L.F. Silva, V.R. Machado, L.C. dos Santos and S. Stülp, Sep. Sci. Technol., 50, 142 (2015); https://doi.org/10.1080/01496395.2014.947519
D. Ayodhya and G. Veerabhadram, Mater. Today Energy, 9, 83 (2018); https://doi.org/10.1016/j.mtener.2018.05.007
Q. Yun, L. Li, Z. Hu, Q. Lu, B. Chen and H. Zhang, Adv. Mater., 32, 1903826 (2020); https://doi.org/10.1002/adma.201903826
N. Kumar, S.-B. Kim, S.-Y. Lee and S.-J. Park, Nanomaterials, 12, 3708 (2022); https://doi.org/10.3390/nano12203708
J.B. Goodenough, Energy Storage Mater., 1, 158 (2015); https://doi.org/10.1016/j.ensm.2015.07.001
M. Armand and J.M. Tarascon, Nature, 451, 652 (2008); https://doi.org/10.1038/451652a
N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho and P.G. Bruce, Angew. Chem. Int. Ed., 51, 9994 (2012); https://doi.org/10.1002/anie.201201429
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin and Z.X. Shen, Adv. Sci., 5, 1700322 (2018); https://doi.org/10.1002/advs.201700322
S. Li, Y. Luo, W. Lv, W. Yu, S. Wu, P. Hou, Q. Yang, Q. Meng, C. Liu and H.-M. Cheng, Adv. Energy Mater., 1, 486 (2011); https://doi.org/10.1002/aenm.201100001
Y. Ahoutou, A. Ilinca and M. Issa, Energies, 15, 1579 (2022); https://doi.org/10.3390/en15041579
M.Y. Worku, Sustainability, 14, 5985 (2022); https://doi.org/10.3390/su14105985
M.S. Zantye, A. Gandhi, Y. Wang, S.P. Vudata, D. Bhattacharyya and M.M.F. Hasan, Energy Environ. Sci., 15, 4119 (2022); https://doi.org/10.1039/D2EE00771A
P.E. Lokhande, U.S. Chavan and A. Pandey, Electrochem. Energy Rev., 3, 155 (2020); https://doi.org/10.1007/s41918-019-00057-z
J. Han, W. Wei, C. Zhang, Y. Tao, W. Lv, G. Ling, F. Kang and Q.H. Yang, Electrochem. Energy Rev., 1, 139 (2018); https://doi.org/10.1007/s41918-018-0006-z
J.L. Gunjakar, A.I. Inamdar, B. Hou, S.N. Cha, S.M. Pawar, A.A. Abu Talha, H.S. Chavan, J. Kim, S. Cho, S. Lee, Y. Jo, H. Kim and H. Im, Nanoscale, 10, 8953 (2018); https://doi.org/10.1039/C7NR09626G
Z. Gao, Y. Zhang, N. Song and X. Li, Mater. Res. Lett., 5, 69 (2017); https://doi.org/10.1080/21663831.2016.1250834
D.P. Dubal, N.R. Chodankar, D.H. Kim and P. Gomez-Romero, Chem. Soc. Rev., 47, 2065 (2018); https://doi.org/10.1039/C7CS00505A
Q.S. Song, Y.Y. Li and S.L.I. Chan, J. Appl. Electrochem., 35, 157 (2005); https://doi.org/10.1007/s10800-004-6301-x
L. Cao, F. Xu, Y.Y. Liang and H.L. Li, Adv. Mater., 16, 1853 (2004); https://doi.org/10.1002/adma.200400183
S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim and J.H. Lee, J. Mater. Chem., 22, 767 (2012); https://doi.org/10.1039/C1JM14468E
J. Yuan, S. Tang, Z. Zhu, X. Qin, R. Qu, Y. Deng, L. Wu, J. Li and G.M. Haarberg, J. Mater. Sci. Mater. Electron., 28, 18022 (2017); https://doi.org/10.1007/s10854-017-7745-1
R. Wang, Y. Sui, S. Huang, Y. Pu and P. Cao, Chem. Eng. J., 331, 527 (2018); https://doi.org/10.1016/j.cej.2017.09.004
S.M. Chen, R. Ramachandran, V. Mani and R. Saraswathi, Int. J. Electrochem. Sci., 9, 4072 (2014); https://doi.org/10.1016/S1452-3981(23)08076-8
L.L. Zhang and X.S. Zhao, Chem. Soc. Rev., 38, 2520 (2009); https://doi.org/10.1039/b813846j
Y.M. Vol’fkovich, A.A. Mikhalin, D.A. Bograchev and V.E. Sosenkin, Russ. J. Electrochem., 48, 424 (2012); https://doi.org/10.1134/S1023193512030159
R. Kötz and M.J.E.A. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
Z. Yu, L. Tetard, L. Zhai and J. Thomas, Energy Environ. Sci., 8, 702 (2015); https://doi.org/10.1039/C4EE03229B
A. Pramitha and Y. Raviprakash, J. Energy Storage, 49, 104120 (2022); https://doi.org/10.1016/j.est.2022.104120
P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008); https://doi.org/10.1038/nmat2297
H. Gleiter, Acta Mater., 48, 1 (2000); https://doi.org/10.1016/S1359-6454(99)00285-2
X. Shan, J. Wu, X. Zhang, L. Wang, J. Yang, Z. Chen, J. Yu and X. Wang, Cell Rep. Phys. Sci., 2, 100654 (2021); https://doi.org/10.1016/j.xcrp.2021.100654
L. Zhang, S. Zheng, L. Wang, H. Tang, H. Xue, G. Wang and H. Pang, Small, 13, 1700917 (2017); https://doi.org/10.1002/smll.201700917
G. Kianpour, F. Soofivand, M. Badiei, M. Salavati-Niasari and M. Hamadanian, J. Mater. Sci. Mater. Electron., 27, 10244 (2016); https://doi.org/10.1007/s10854-016-5103-3
A. Alborzi and S. Khademolhoseini, J. Mater. Sci. Mater. Electron., 27, 3963 (2016); https://doi.org/10.1007/s10854-015-4249-8
B. Ramulu, S. Chandra Sekhar, G. Nagaraju and J.S. Yu, Appl. Surf. Sci., 515, 146023 (2020); https://doi.org/10.1016/j.apsusc.2020.146023
Y. Li, S. Zhang, M. Ma, X. Mu, Y. Zhang, J. Du, Q. Hu, B. Huang, X. Hua, G. Liu, E. Xie and Z. Zhang, Chem. Eng. J., 372, 452 (2019); https://doi.org/10.1016/j.cej.2019.04.167
M. Dhanasekar, S. Ratha, C.S. Rout and S.V. Bhat, J. Environ. Chem. Eng., 5, 2997 (2017); https://doi.org/10.1016/j.jece.2017.05.054
R. Ghanbari and S.R. Ghorbani, J. Energy Storage, 60, 106670 (2023); https://doi.org/10.1016/j.est.2023.106670
S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab and M. Mehrzad, J. Mater. Sci. Mater. Electron., 27, 5758 (2016); https://doi.org/10.1007/s10854-016-4489-2
A. Sathiyan, S. Rajkumar, S. Dhineshkumar and J.P. Merlin, J. Indus. Eng. Chem., 129, 521 (2024); https://doi.org/10.1016/j.jiec.2023.09.011
J. Acosta-Vergara, R.A. Torres-Palma and Y. Ávila-Torres, MethodsX, 11, 102258 (2023); https://doi.org/10.1016/j.mex.2023.102258
R. Karthik, N. Karikalan, S.-M. Chen, J.V. Kumar, C. Karuppiah and V. Muthuraj, J. Catalysis, 352, 606 (2017); https://doi.org/10.1016/j.jcat.2017.06.001
W. Zhang, P. Xing, C. Zhang, J. Zhang, X. Hu, L. Zhao and Y. He, Adv. Powder Technol., 33, 103573 (2022); https://doi.org/10.1016/j.apt.2022.103573
A. Gholami and M. Maddahfar, J. Mater. Sci. Mater. Electron., 27, 6773 (2016); https://doi.org/10.1007/s10854-016-4627-x
M. Bazarganipour, Ceram. Int., 42, 12617 (2016); https://doi.org/10.1016/j.ceramint.2016.04.151
B.J. Rani, S. Swathi, R. Yuvakkumar, G. Ravi, R. Rajalakshmi, A.G. Al-Sehemi and D. Velauthapillai, J. Energy Storage, 56, 105945 (2022); https://doi.org/10.1016/j.est.2022.105945
J. Bhagwan, S.K. Hussain and J.S. Yu, ACS Sustain. Chem. Eng., 7, 12340 (2019); https://doi.org/10.1021/acsanm.3c06056
S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani and A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron., 27, 4351 (2016); https://doi.org/10.1007/s10854-016-4303-1
H.S. Chawda, A.K. Rai, R. Rathore, S.C. Ameta and R. Ameta, J. Indian Chem. Soc., 97, 2397 (2020).
H.S. Chawda, J. Bhatt, R. Rathore, S.C. Ameta and R. Ameta, J. Adv. Chem. Sci., 7, 725 (2021); https://doi.org/10.30799/jacs.237.21070202
H. Cao, N. Wu, Y. Liu, S. Wang, W. Du and J. Liu, Electrochim. Acta, 225, 605 (2017); https://doi.org/10.1016/j.electacta.2017.01.021
H. Li, H. Xuan, J. Gao, T. Liang, X. Han, Y. Guan, J. Yang, P. Han and Y. Du, Electrochim. Acta, 312, 213 (2019); https://doi.org/10.1016/j.electacta.2019.05.008
F. Namvar, F. Beshkar and M. Salavati-Niasari, J. Mater. Sci. Mater. Electron., 28, 7962 (2017); https://doi.org/10.1007/s10854-017-6499-0
Z. Xu, S. Sun, Y. Han, Z. Wei, Y. Cheng, S. Yin and W. Cui, ACS Appl. Energy Mater., 3, 5393 (2020); https://doi.org/10.1021/acsaem.0c00393
G.K. Veerasubramani, K. Krishnamoorthy, R. Sivaprakasam and S.J. Kim, Mater. Chem. Phys., 147, 836 (2014); https://doi.org/10.1016/j.matchemphys.2014.06.028
M. Kumar, R. Singh, H. Khajuria and H.N. Sheikh, J. Mater. Sci. Mater. Electron., 28, 9423 (2017); https://doi.org/10.1007/s10854-017-6684-1
S. Hajebi and A. Abedini, J. Mater. Sci. Mater. Electron., 27, 4489 (2016); https://doi.org/10.1007/s10854-016-4322-y
D. Yu, Z. Zhang, Y. Teng, Y. Meng, X. Zhao and X. Liu, J. Alloys Compd., 835, 155244 (2020); https://doi.org/10.1016/j.jallcom.2020.155244
S. Liu, Y. Yin, D. Ni, K.S. Hui, K.N. Hui, S. Lee, C.-Y. Ouyang and S.C. Jun, Energy Storage Mater., 19, 186 (2019); https://doi.org/10.1016/j.ensm.2018.10.022
G. Zhao, Y. Chen, P. Sun, S. Hao, X. Wang, G. Qu, Y. Xing and X. Xu, Nanoscale, 12, 17849 (2020); https://doi.org/10.1039/D0NR05377E
R. Oztekin and D.T. Sponza, J. Materi. Sci. Manufact. Res., 4, 2 (2023); https://doi.org/10.47363/JMSMR/2023(4)149
M. Farahpour and M. Arvand, J. Energy Storage, 40, 102742 (2021); https://doi.org/10.1016/j.est.2021.102742
K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal and T. Alagesan, Ceram. Int., 44, 20075 (2018); https://doi.org/10.1016/j.ceramint.2018.07.282
G. Singh, V.S. Bhargava and M. Sharma, AIP Conf. Proc., 1961, 030004 (2018); https://doi.org/10.1063/1.5035206
G.K. Veerasubramani, K. Krishnamoorthy and S.J. Kim, RSC Adv., 5, 16319 (2015); https://doi.org/10.1039/C4RA15070H
J.V. Kumar, R. Karthik, S.M. Chen, V. Muthuraj and C. Karuppiah, Sci. Rep., 6, 34149 (2016); https://doi.org/10.1038/srep34149
J.J. William, S. Balakrishnan, M. Murugesan, M. Gopalan, A.J. Britten and M. Mkandawire, Mater. Adv., 3, 8288 (2022); https://doi.org/10.1039/D2MA00708H
L. Yang, J. Wang, Y. Wan, Y. Li, H. Xie, H. Cheng and H.J. Seo, J. Alloys Compd., 664, 756 (2016); https://doi.org/10.1016/j.jallcom.2015.10.037
H.Y. He, P. Chen, L.Y. Cao and J. Lu, Res. Chem. Intermed., 40, 1525 (2014); https://doi.org/10.1007/s11164-013-1057-8
M. Rosic, A. Zarubica, A. Šaponjic, B. Babic, J. Zagorac, D. Jordanov and B. Matovic, Mater. Res. Bull., 98, 111 (2018); https://doi.org/10.1016/j.materresbull.2017.10.015
Y. Li, B. Weisheng and G. Kaijie, 2009 International Conference on Energy and Environment Technology, Guilin, China, pp. 672-675 (2009).
C.C. Chen, Y.R. Jiang and K.H. Chang, Adv. Mater. Res., 557, 761 (2012); https://doi.org/10.4028/www.scientific.net/AMR.557-559.761
Y.R. Jiang, W.W. Lee, K.T. Chen, M.C. Wang, K.H. Chang and C.C. Chen, J. Taiwan Inst. Chem. Eng., 45, 207 (2014); https://doi.org/10.1016/j.jtice.2013.05.007
L. Lv, W. Tong, Y. Zhang, Y. Su and X. Wang, J. Nanosci. Nanotechnol., 11, 9506 (2011); https://doi.org/10.1166/jnn.2011.5269
L. Zhang, X.F. Cao, Y.L. Ma, X.T. Chen and Z.L. Xue, New J. Chem., 34, 2027 (2010); https://doi.org/10.1039/c0nj00048e
L. Wang, X. Huang, M. Han, L. Lyu, T. Li, Y. Gao, Q. Zeng and C. Hu, Appl. Catal. B, 257, 117904 (2019); https://doi.org/10.1016/j.apcatb.2019.117904
X. Zhao, T. Xu, W. Yao and Y. Zhu, Appl. Surf. Sci., 255, 8036 (2009); https://doi.org/10.1016/j.apsusc.2009.05.010
Y. Hao, X. Dong, S. Zhai, X. Wang, H. Ma and X. Zhang, RSC Adv., 6, 35709 (2016); https://doi.org/10.1039/C6RA05796A
J. Bai, Y. Li, J. Liu and L. Liu, Micropor. Mesopor. Mater., 240, 91 (2017); https://doi.org/10.1016/j.micromeso.2016.11.008
W. Yin, W. Wang and S. Sun, Catal. Commun., 11, 647 (2010); https://doi.org/10.1016/j.catcom.2010.01.014
C. Guo, J. Xu, S. Wang, L. Li, Y. Zhang and X. Li, CrystEngComm, 14, 3602 (2012); https://doi.org/10.1039/c2ce06757a
T. Chankhanittha, V. Somaudon, J. Watcharakitti, V. Piyavarakorn and S. Nanan, Mater. Lett., 258, 126764 (2020); https://doi.org/10.1016/j.matlet.2019.126764
J. Bai, X. Li, Z. Hao and L. Liu, J. Colloid Interface Sci., 560, 510 (2020); https://doi.org/10.1016/j.jcis.2019.10.013
M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun and Y. Liu, J. Hazard. Mater., 225-226, 155 (2012); https://doi.org/10.1016/j.jhazmat.2012.05.006
Y. Sun, Z. Liu, X. Zheng, C. Wang, J. Wang, M. Jiang, D. Jiang and J. Liu, Compos., Part B Eng., 249, 110409 (2023); https://doi.org/10.1016/j.compositesb.2022.110409
S. Jiang, M. Pang, M. Pang, J. Song, R. Wang, H. Yang, Q. Pan, W. He, M. Mao and S. Li, Colloids Surf. A Physicochem. Eng. Asp., 656, 130536 (2023); https://doi.org/10.1016/j.colsurfa.2022.130536
A.B. Appiagyei, L. Asiedua-Ahenkorah, C. Bathula, H.S. Kim, S.S. Han, K.M. Rao and D.A. Anang, J. Energy Storage, 58, 106383 (2023); https://doi.org/10.1016/j.est.2022.106383
M.A. Mohammadi, M. Arvand and S. Daneshvar, J. Electroanal. Chem., 904, 115934 (2022); https://doi.org/10.1016/j.jelechem.2021.115934
W. He, S. Jiang, M. Pang, J. Li, M. Pang, M. Mao, R. Wang, H. Yang, Q. Pan and J. Zhao, Colloids Surf. A Physicochem. Eng. Asp., 660, 130883 (2023); https://doi.org/10.1016/j.colsurfa.2022.130883
J. Li, Y. Zou, L. Jin, F. Xu, L. Sun and C. Xiang, J. Energy Storage, 50, 104639 (2022); https://doi.org/10.1016/j.est.2022.104639
Z. Cheng, Z. Ren, W. Ye, G. Li, X. Huang, Y. Lin, F. Xiong and H. Zhang, J. Energy Storage, 56, 105941 (2022); https://doi.org/10.1016/j.est.2022.105941
S. Cui, Q. Hu, K. Sun, X. Wang, F. Wang, H.A. Hamouda, H. Peng and G. Ma, ACS Appl. Nano Mater., 5, 6181 (2022); https://doi.org/10.1021/acsanm.2c00131
Y. Gao, J. Tao, J. Li, H. Xie, Y. Li, T. Wang and C. Zhang, J. Alloys Compd., 925, 166705 (2022); https://doi.org/10.1016/j.jallcom.2022.166705
R. Liang, Y. Du, J. Wu, X. Li, T. Liang, J. Yuan, P. Xiao and J. Chen, J. Solid State Chem., 307, 122845 (2022); https://doi.org/10.1016/j.jssc.2021.122845
H.M. El Sharkawy, A.M. Mohamed, M. Ramadan and N.K. Allam, J. Energy Storage, 54, 105272 (2022); https://doi.org/10.1016/j.est.2022.105272