Copyright (c) 2024 MD NURUL ISLAM SIDDIQUE
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic Modeling of Sodium Bicarbonate Pre-treatment of Corn Stalks for Increased Biogas Generation during Anaerobic Digestion: Viability and Fertilizer Potential
Corresponding Author(s) : Md. Nurul Islam Siddique
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
Sustainability in terms of the economy and the environment is severely hampered by poor waste management in the industrial sectors and a lack of renewable energy sources to meet expanding energy demands. To address this issue, the influences of sodium bicarbonate treatment on biogas generation during the anaerobic fermentation of corn stalks were analyzed. The application of sodium bicarbonate (9%, w/w) resulted in a significantly higher generation of 14692 mL biogas with a production of 223 mL/g, which was 30% higher than the untreated sample biogas generation. Surprisingly, chemical oxygen demand elimination was boosted by a factor of ten. In addition, sodium bicarbonate stabilized the pH of fermented corn stalks. The Gompertz modeling, according to the findings, had a significant correlation coefficient (> 0.995) and fit the accumulative biogas production trends well. Sludge recapture from the fermented effluent was 0.08 m3 sludge/m3 wastewater. Sodium bicarbonate added to corn stalks may increased the cumulative methane production while lowering chemical oxygen demand (COD) levels.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Malinauskaite, H. Jouhara, D. Czajczynska, P. Stanchev, E. Katsou, P. Rostkowski, R.J. Thorne, J. Colón, S. Ponsá, F. Al-Mansour, L. Anguilano, R. Krzyzynska, I.C. López, A.Vlasopoulos and N. Spencer, Energy, 141, 2013 (2017); https://doi.org/10.1016/j.energy.2017.11.128
- M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
- M. Zaynab, R. Al-Yahyai, A. Ameen, Y. Sharif, L. Ali, M. Fatima, K.A. Khan and S. Li, J. King Saud Univ. Sci., 34, 101653 (2022); https://doi.org/10.1016/j.jksus.2021.101653
- B.K. Zaied, M. Nasrullah, M.N.I. Siddique, A.W. Zularisam, L. Singh and S. Krishnan, Sci. Total Environ., 706, 136095 (2020); https://doi.org/10.1016/j.scitotenv.2019.136095
- B.K. Zaied, M. Nasrullah, M.N. Islam Siddique, A.W. Zularisam, L. Singh and S. Krishnan, J. Environ. Chem. Eng., 8, 103551 (2020); https://doi.org/10.1016/j.jece.2019.103551
- F.M. Liew, M.E. Martin, R.C. Tappel, B.D. Heijstra, C. Mihalcea and M. Köpke, Front. Microbiol., 7, 694 (2016); https://doi.org/10.3389/fmicb.2016.00694
- T. Nevzorova and V. Kutcherov, Energy Strategy Rev., 26, 100414 (2019); https://doi.org/10.1016/j.esr.2019.100414
- K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf and K.O. Rahman, RSC Adv., 13, 17595 (2023); https://doi.org/10.1039/D3RA00723E
- N.A.A. Qasem, R.H. Mohammed and D.U. Lawal, NPJ Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
- Z.B. Khalid, M.N.I. Siddique, A. Nayeem, T.M. Adyel, S.B. Ismail and M.Z. Ibrahim, J. Environ. Chem. Eng., 9, 105489 (2021); https://doi.org/10.1016/j.jece.2021.105489
- K.K. Sodhi, L.C. Mishra, C.K. Singh and M. Kumar, Curr. Res. Microb. Sci., 3, 100166 (2022); https://doi.org/10.1016/j.crmicr.2022.100166
- M. Nasrullah, M.N.I. Siddique and A.W. Zularisam, Asian J. Chem., 26, 4281 (2014); https://doi.org/10.14233/ajchem.2014.16134
- M. Ahmaruzzaman and V.K. Gupta, Ind. Eng. Chem. Res., 50, 13589 (2011); https://doi.org/10.1021/ie201477c
- Z. Shamsollahi and A. Partovinia, J. Environ. Manage., 246, 314 (2019); https://doi.org/10.1016/j.jenvman.2019.05.145
- J.K. Sahoo, A. Hota, C. Singh, S. Barik, N. Sahu, S.K. Sahoo, M.K. Sahu and H. Sahoo, Int. J. Environ. Anal. Chem., 103, 9131 (2023); https://doi.org/10.1080/03067319.2021.2003349
- B.K. Zaied, M.N.I. Siddique, A.W. Zularisam, M.F. Ahmad and Y.M. Salih, Asian J. Chem., 31, 2413 (2019); https://doi.org/10.14233/ajchem.2019.22196
- T. Mitra, N. Bar and S.K. Das, SN Appl. Sci., 1, 486 (2019); https://doi.org/10.1007/s42452-019-0513-5
- Z.B. Khalid, M.N.I. Siddique, A. Nayeem, T.M. Adyel, S.B. Ismail and M.Z. Ibrahim, J. Environ. Chem. Eng., 9, 105489 (2021); https://doi.org/10.1016/j.jece.2021.105489
- S. Krishnan, L. Singh, P. Mishra, M. Nasrullah, M. Sakinah, S. Thakur, N.I. Siddique and Z.A. Wahid, Environ. Technol. Innov., 8, 360 (2017); https://doi.org/10.1016/j.eti.2017.08.005
- Z.B. Khalid, M.N.I. Siddique, M. Nasrullah, L. Singh, Z.B.A. Wahid and M.F. Ahmad, Environ. Technol. Innov., 16, 100446 (2019); https://doi.org/10.1016/j.eti.2019.100446
- S. He, Z. Li, X. Shi, H. Yang, L. Gong and X. Cheng, Adv. Powder Technol., 26, 537 (2015); https://doi.org/10.1016/j.apt.2015.01.002
- (47) P.N.Y. Yek, C. Li, W. Peng, C.S. Wong, R.K. Liew, W.A. Wan Mahari, C. Sonne and S.S. Lam, Chem. Eng. J., 425, 131886 (2021); https://doi.org/10.1016/j.cej.2021.131886
- Q. Yang, S. Ravnskov, J.W.M. Pullens and M.N. Andersen, Sci. Total Environ., 816, 151649 (2022); https://doi.org/10.1016/j.scitotenv.2021.151649
- Z. Shi, M. Usman, J. He, H. Chen, S. Zhang and G. Luo, Water Res., 205, 117679 (2021); https://doi.org/10.1016/j.watres.2021.117679
- A. González-González, F. Cuadros, A. Ruiz-Celma and F. López-Rodríguez, Bioresour. Technol., 136, 109 (2013); https://doi.org/10.1016/j.biortech.2013.02.031
- A. Pant and J.P.N. Rai, Environmental Challenges, 5, 100262 (2021); https://doi.org/10.1016/j.envc.2021.100262
- G. Kaur, D. Johnravindar and J.W.C. Wong, Bioresour. Technol., 308, 123250 (2020); https://doi.org/10.1016/j.biortech.2020.123250
- D. Johnravindar, J.W.C. Wong, D. Chakraborty, G. Bodedla and G. Kaur, J. Environ. Manage., 290, 112457 (2021); https://doi.org/10.1016/j.jenvman.2021.112457
- Z. Yang, Z. Wang, G. Liang, X. Zhang and X. Xie, Chem. Eng. J., 426, 131777 (2021); https://doi.org/10.1016/j.cej.2021.131777
- F. Zheng, J. Fang, F. Guo, X. Yang, T. Liu, M. Chen, M. Nie and Y. Chen, Chem. Eng. J., 432, 134377 (2022); https://doi.org/10.1016/j.cej.2021.134377
- S. Chou, C. Huang and Y.-H. Huang, Chemosphere, 39, 1997 (1999); https://doi.org/10.1016/S0045-6535(99)00089-2
- I. Carra, J.A. Sánchez Pérez, S. Malato, O. Autin, B. Jefferson and P. Jarvis, J. Chem. Technol. Biotechnol., 91, 72 (2016); https://doi.org/10.1002/jctb.4577
- M.O. Saeed, K. Azizli, M.H. Isa, M.J. Bashir and J. Water, Protein Eng., 8, e7 (2015).
- K.H. Ng and C.K. Cheng, Chem. Eng. J., 300, 127 (2016); https://doi.org/10.1016/j.cej.2016.04.105
- C.A. Henard, H.K. Smith and M.T. Guarnieri, Metab. Eng., 41, 152 (2017); https://doi.org/10.1016/j.ymben.2017.03.007
- G. Oh, L. Zhang and D. Jahng, J. Chem. Technol. Biotechnol., 83, 1204 (2008); https://doi.org/10.1002/jctb.1923
- N. Anwar, W. Wang, J. Zhang, Y. Li, C. Chen, G. Liu and R. Zhang, Water Sci. Technol., 73, 1865 (2016); https://doi.org/10.2166/wst.2016.035
- K. Hagos, J. Zong, D. Li, C. Liu and X. Lu, Renew. Sustain. Energy Rev., 76, 1485 (2017); https://doi.org/10.1016/j.rser.2016.11.184
- S. Xie, F.I. Hai, X. Zhan, W. Guo, H.H. Ngo, W.E. Price and L.D. Nghiem, Bioresour. Technol., 222, 498 (2016); https://doi.org/10.1016/j.biortech.2016.10.015
- M.K. Lam and K.T. Lee, Biotechnol. Adv., 29, 124 (2011); https://doi.org/10.1016/j.biotechadv.2010.10.001
- K. Le Van and T.T. Luong Thi, Prog. Nat. Sci., 24, 191 (2014); https://doi.org/10.1016/j.pnsc.2014.05.012
- Environmental Quality (Pollution Control From Solid Waste Transfer Stations and Landfills) Regulations 2009 – P.U. (A) 433/2009; https://www.doe.gov.my/en/environmental-quality-pollution-control-from-solid-waste-transfer-stations-and-landfills-regulations-2009-p-u-a-433-2009/
References
J. Malinauskaite, H. Jouhara, D. Czajczynska, P. Stanchev, E. Katsou, P. Rostkowski, R.J. Thorne, J. Colón, S. Ponsá, F. Al-Mansour, L. Anguilano, R. Krzyzynska, I.C. López, A.Vlasopoulos and N. Spencer, Energy, 141, 2013 (2017); https://doi.org/10.1016/j.energy.2017.11.128
M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
M. Zaynab, R. Al-Yahyai, A. Ameen, Y. Sharif, L. Ali, M. Fatima, K.A. Khan and S. Li, J. King Saud Univ. Sci., 34, 101653 (2022); https://doi.org/10.1016/j.jksus.2021.101653
B.K. Zaied, M. Nasrullah, M.N.I. Siddique, A.W. Zularisam, L. Singh and S. Krishnan, Sci. Total Environ., 706, 136095 (2020); https://doi.org/10.1016/j.scitotenv.2019.136095
B.K. Zaied, M. Nasrullah, M.N. Islam Siddique, A.W. Zularisam, L. Singh and S. Krishnan, J. Environ. Chem. Eng., 8, 103551 (2020); https://doi.org/10.1016/j.jece.2019.103551
F.M. Liew, M.E. Martin, R.C. Tappel, B.D. Heijstra, C. Mihalcea and M. Köpke, Front. Microbiol., 7, 694 (2016); https://doi.org/10.3389/fmicb.2016.00694
T. Nevzorova and V. Kutcherov, Energy Strategy Rev., 26, 100414 (2019); https://doi.org/10.1016/j.esr.2019.100414
K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf and K.O. Rahman, RSC Adv., 13, 17595 (2023); https://doi.org/10.1039/D3RA00723E
N.A.A. Qasem, R.H. Mohammed and D.U. Lawal, NPJ Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
Z.B. Khalid, M.N.I. Siddique, A. Nayeem, T.M. Adyel, S.B. Ismail and M.Z. Ibrahim, J. Environ. Chem. Eng., 9, 105489 (2021); https://doi.org/10.1016/j.jece.2021.105489
K.K. Sodhi, L.C. Mishra, C.K. Singh and M. Kumar, Curr. Res. Microb. Sci., 3, 100166 (2022); https://doi.org/10.1016/j.crmicr.2022.100166
M. Nasrullah, M.N.I. Siddique and A.W. Zularisam, Asian J. Chem., 26, 4281 (2014); https://doi.org/10.14233/ajchem.2014.16134
M. Ahmaruzzaman and V.K. Gupta, Ind. Eng. Chem. Res., 50, 13589 (2011); https://doi.org/10.1021/ie201477c
Z. Shamsollahi and A. Partovinia, J. Environ. Manage., 246, 314 (2019); https://doi.org/10.1016/j.jenvman.2019.05.145
J.K. Sahoo, A. Hota, C. Singh, S. Barik, N. Sahu, S.K. Sahoo, M.K. Sahu and H. Sahoo, Int. J. Environ. Anal. Chem., 103, 9131 (2023); https://doi.org/10.1080/03067319.2021.2003349
B.K. Zaied, M.N.I. Siddique, A.W. Zularisam, M.F. Ahmad and Y.M. Salih, Asian J. Chem., 31, 2413 (2019); https://doi.org/10.14233/ajchem.2019.22196
T. Mitra, N. Bar and S.K. Das, SN Appl. Sci., 1, 486 (2019); https://doi.org/10.1007/s42452-019-0513-5
Z.B. Khalid, M.N.I. Siddique, A. Nayeem, T.M. Adyel, S.B. Ismail and M.Z. Ibrahim, J. Environ. Chem. Eng., 9, 105489 (2021); https://doi.org/10.1016/j.jece.2021.105489
S. Krishnan, L. Singh, P. Mishra, M. Nasrullah, M. Sakinah, S. Thakur, N.I. Siddique and Z.A. Wahid, Environ. Technol. Innov., 8, 360 (2017); https://doi.org/10.1016/j.eti.2017.08.005
Z.B. Khalid, M.N.I. Siddique, M. Nasrullah, L. Singh, Z.B.A. Wahid and M.F. Ahmad, Environ. Technol. Innov., 16, 100446 (2019); https://doi.org/10.1016/j.eti.2019.100446
S. He, Z. Li, X. Shi, H. Yang, L. Gong and X. Cheng, Adv. Powder Technol., 26, 537 (2015); https://doi.org/10.1016/j.apt.2015.01.002
(47) P.N.Y. Yek, C. Li, W. Peng, C.S. Wong, R.K. Liew, W.A. Wan Mahari, C. Sonne and S.S. Lam, Chem. Eng. J., 425, 131886 (2021); https://doi.org/10.1016/j.cej.2021.131886
Q. Yang, S. Ravnskov, J.W.M. Pullens and M.N. Andersen, Sci. Total Environ., 816, 151649 (2022); https://doi.org/10.1016/j.scitotenv.2021.151649
Z. Shi, M. Usman, J. He, H. Chen, S. Zhang and G. Luo, Water Res., 205, 117679 (2021); https://doi.org/10.1016/j.watres.2021.117679
A. González-González, F. Cuadros, A. Ruiz-Celma and F. López-Rodríguez, Bioresour. Technol., 136, 109 (2013); https://doi.org/10.1016/j.biortech.2013.02.031
A. Pant and J.P.N. Rai, Environmental Challenges, 5, 100262 (2021); https://doi.org/10.1016/j.envc.2021.100262
G. Kaur, D. Johnravindar and J.W.C. Wong, Bioresour. Technol., 308, 123250 (2020); https://doi.org/10.1016/j.biortech.2020.123250
D. Johnravindar, J.W.C. Wong, D. Chakraborty, G. Bodedla and G. Kaur, J. Environ. Manage., 290, 112457 (2021); https://doi.org/10.1016/j.jenvman.2021.112457
Z. Yang, Z. Wang, G. Liang, X. Zhang and X. Xie, Chem. Eng. J., 426, 131777 (2021); https://doi.org/10.1016/j.cej.2021.131777
F. Zheng, J. Fang, F. Guo, X. Yang, T. Liu, M. Chen, M. Nie and Y. Chen, Chem. Eng. J., 432, 134377 (2022); https://doi.org/10.1016/j.cej.2021.134377
S. Chou, C. Huang and Y.-H. Huang, Chemosphere, 39, 1997 (1999); https://doi.org/10.1016/S0045-6535(99)00089-2
I. Carra, J.A. Sánchez Pérez, S. Malato, O. Autin, B. Jefferson and P. Jarvis, J. Chem. Technol. Biotechnol., 91, 72 (2016); https://doi.org/10.1002/jctb.4577
M.O. Saeed, K. Azizli, M.H. Isa, M.J. Bashir and J. Water, Protein Eng., 8, e7 (2015).
K.H. Ng and C.K. Cheng, Chem. Eng. J., 300, 127 (2016); https://doi.org/10.1016/j.cej.2016.04.105
C.A. Henard, H.K. Smith and M.T. Guarnieri, Metab. Eng., 41, 152 (2017); https://doi.org/10.1016/j.ymben.2017.03.007
G. Oh, L. Zhang and D. Jahng, J. Chem. Technol. Biotechnol., 83, 1204 (2008); https://doi.org/10.1002/jctb.1923
N. Anwar, W. Wang, J. Zhang, Y. Li, C. Chen, G. Liu and R. Zhang, Water Sci. Technol., 73, 1865 (2016); https://doi.org/10.2166/wst.2016.035
K. Hagos, J. Zong, D. Li, C. Liu and X. Lu, Renew. Sustain. Energy Rev., 76, 1485 (2017); https://doi.org/10.1016/j.rser.2016.11.184
S. Xie, F.I. Hai, X. Zhan, W. Guo, H.H. Ngo, W.E. Price and L.D. Nghiem, Bioresour. Technol., 222, 498 (2016); https://doi.org/10.1016/j.biortech.2016.10.015
M.K. Lam and K.T. Lee, Biotechnol. Adv., 29, 124 (2011); https://doi.org/10.1016/j.biotechadv.2010.10.001
K. Le Van and T.T. Luong Thi, Prog. Nat. Sci., 24, 191 (2014); https://doi.org/10.1016/j.pnsc.2014.05.012
Environmental Quality (Pollution Control From Solid Waste Transfer Stations and Landfills) Regulations 2009 – P.U. (A) 433/2009; https://www.doe.gov.my/en/environmental-quality-pollution-control-from-solid-waste-transfer-stations-and-landfills-regulations-2009-p-u-a-433-2009/