Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Functionalized Thiol-Graphene Oxide for Removal of Mercury from Aqueous Solution
Corresponding Author(s) : Saksit Chanthai
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
Graphene oxide (GO) was optimally produced from graphite as a starting material and was subject to functionalize with 3-mercaptopropyl-trimethoxysilane to acquire thiol group (-SH) as a selective carbon-based adsorbent for the removal of mercury from aqueous solution comparing with its bare graphite. The GO-SH was characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy. IR characteristic peaks appear at wave numbers of 3367 n(O-H), 2576 n(S-H), 1719 n(C=O), 1224 and 1049 n(C-O) and 1160 n(Si-O-C) indicating the thiol group attached. Also, EDX spectrum revealing both Si and S peaks confirms the 3-mercaptopropyl-trimethoxysilane bound on the graphene oxide surface. For an optimal adsorption study, the effects of pH solution, contact time and initial concentration of Hg(II) were investigated in association with determination of Hg(II) by HGAAS. From the results, the adsorption capacity of the functionalized GO-SH for Hg(II) was 80.65 mg/g at pH 6.6, about 3 times higher than that of its bare graphite (22.94 mg/g). The adsorption isotherm of the GO-SH for Hg(II) was found only fitting well with Langmuir model, while that of bare graphite followed the Freundlich one. It is implied that graphene oxide modified with thiol can be used as a high potential adsorbent for such toxic metals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Hadavifar, N. Bahramifar, H. Younesi and Q. Li, Chem. Eng. J., 237, 217 (2014); doi:10.1016/j.cej.2013.10.014.
- C. Xiong, Q. Jia, X. Chen, G. Wang and C. Yao, Ind. Eng. Chem. Res., 52, 4978 (2013); doi:10.1021/ie3033312.
- R. Wahi, Z. Ngaini and V.U. Jok, World Appl. Sci. J., 5 (special issue), 84 (2009).
- F.S. Zhang, J.O. Nriagu and H. Itoh, Water Res., 39, 389 (2005); doi:10.1016/j.watres.2004.09.027.
- X. Lu, J. Jiang, K. Sun, J. Wang and Y. Zhang, Mar. Pollut. Bull., 78, 69 (2014); doi:10.1016/j.marpolbul.2013.11.007.
- Y. Zhang, X. Wang, J. Liu and L. Wu, J. Chem. Data, 58, 1141 (2013); doi:10.1021/je301168m.
- Y. Park, H. Lee, S.B. Park, M.-H. Oh, K. Cho, S. Suzuki, M. Nagai and F.B. Prinz, J. Korean Phys. Soc., 56, 1215 (2010); doi:10.3938/jkps.56.1215.
- K.H. Nam, S. Gomez-Salazar and L.L. Tavlarides, Ind. Eng. Chem. Res., 42, 1955 (2003); doi:10.1021/ie020834l.
- J.M. Arsuaga, J. Aguado, A. Arencibia and M.S. López-Gutiérrez, Adsorption, 20, 311 (2014); doi:10.1007/s10450-013-9586-4.
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
- A.K. Meena, G.K. Mishra, P.K. Rai, C. Rajagopal and P.N. Nagar, J. Hazard. Mater., 122, 161 (2005); doi:10.1016/j.jhazmat.2005.03.024.
- J.H. Cai and C.Q. Jia, Ind. Eng. Chem. Res., 49, 2716 (2010); doi:10.1021/ie901194r.
- E. Ekinci, T. Budinova, F. Yardim, N. Petrov, M. Razvigorova and V. Minkova, Fuel Process. Technol., 77-78, 437 (2002); doi:10.1016/S0378-3820(02)00065-6.
- M.M. Rao, D.H.K.K. Reddy, P. Venkateswarlu and K. Seshaiah, J. Environ. Manage., 90, 634 (2009); doi:10.1016/j.jenvman.2007.12.019.
References
M. Hadavifar, N. Bahramifar, H. Younesi and Q. Li, Chem. Eng. J., 237, 217 (2014); doi:10.1016/j.cej.2013.10.014.
C. Xiong, Q. Jia, X. Chen, G. Wang and C. Yao, Ind. Eng. Chem. Res., 52, 4978 (2013); doi:10.1021/ie3033312.
R. Wahi, Z. Ngaini and V.U. Jok, World Appl. Sci. J., 5 (special issue), 84 (2009).
F.S. Zhang, J.O. Nriagu and H. Itoh, Water Res., 39, 389 (2005); doi:10.1016/j.watres.2004.09.027.
X. Lu, J. Jiang, K. Sun, J. Wang and Y. Zhang, Mar. Pollut. Bull., 78, 69 (2014); doi:10.1016/j.marpolbul.2013.11.007.
Y. Zhang, X. Wang, J. Liu and L. Wu, J. Chem. Data, 58, 1141 (2013); doi:10.1021/je301168m.
Y. Park, H. Lee, S.B. Park, M.-H. Oh, K. Cho, S. Suzuki, M. Nagai and F.B. Prinz, J. Korean Phys. Soc., 56, 1215 (2010); doi:10.3938/jkps.56.1215.
K.H. Nam, S. Gomez-Salazar and L.L. Tavlarides, Ind. Eng. Chem. Res., 42, 1955 (2003); doi:10.1021/ie020834l.
J.M. Arsuaga, J. Aguado, A. Arencibia and M.S. López-Gutiérrez, Adsorption, 20, 311 (2014); doi:10.1007/s10450-013-9586-4.
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
A.K. Meena, G.K. Mishra, P.K. Rai, C. Rajagopal and P.N. Nagar, J. Hazard. Mater., 122, 161 (2005); doi:10.1016/j.jhazmat.2005.03.024.
J.H. Cai and C.Q. Jia, Ind. Eng. Chem. Res., 49, 2716 (2010); doi:10.1021/ie901194r.
E. Ekinci, T. Budinova, F. Yardim, N. Petrov, M. Razvigorova and V. Minkova, Fuel Process. Technol., 77-78, 437 (2002); doi:10.1016/S0378-3820(02)00065-6.
M.M. Rao, D.H.K.K. Reddy, P. Venkateswarlu and K. Seshaiah, J. Environ. Manage., 90, 634 (2009); doi:10.1016/j.jenvman.2007.12.019.