Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Activation Mechanism of Rice Husk Based Mesoporous Carbon
Corresponding Author(s) : Guihua Hou
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
Mesoporous carbon was prepared by a combined method of carbonization and activation processes, in which rice husk and KOH were used as carbon source and activator, respectively. Nitrogen adsorption-desorption isotherms (ADI) were measured by specific surface area instrument, the pore size distribution and pore volume were calculated by BET equation and BJH method. The mesoporous characteristic was characterized by small angle X-ray diffraction. The gas and solid composition from husk activation process was characterized by X-ray diffraction (XRD) and simultaneous thermal analysis mass spectrometry (TG-MS), then the pore forming mechanism was speculated. The results show that the average pore size of the prepared mesoporous carbon was as high as 4.54 nm and the specific surface area and mesopore rate were 2174.09 m2/g and 78.73 %, respectively. The K2Si4O9 was found in the activated rice husks, it may be from reaction SiO2 of rice husk with the decomposer K2O of KOH.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.F. Cen, X. Gao, M.J. Ni, R.B. Wu, G. Xiao and H.L. Zhou, J. Combustion Sci. Technol., 14 (2014).
- W.-G. Li, X.-J. Gong, K. Wang, X.-R. Zhang and W.-B. Fan, Bioresour. Technol., 165, 166 (2014); doi:10.1016/j.biortech.2014.02.069.
- Y. Shi, J.W. Chen, J. Chen, R.A. Macleod and M. Malac, Appl. Catal. A, 441-442, 99 (2000); doi:10.1016/j.apcata.2012.07.014.
- M. Kubota, T. Ito, F. Watanabe and H. Matsuda, Appl. Therm. Eng., 31, 1495 (2011); doi:10.1016/j.applthermaleng.2011.01.036.
- T.H. Liou, Chem. Eng. J., 158, 129 (2010); doi:10.1016/j.cej.2009.12.016.
- L. Lin, S.R. Zhai, Z.Y. Xiao, Y. Song, Q.-D. An and X.-W. Song, Bioresour. Technol., 136, 437 (2013); doi:10.1016/j.biortech.2013.03.048.
- W.M. Qiao, Q.F. Zha and L. Liu, Carbon Techniques, 4, 8 (1994).
- P. Ehrburger, A. Addoun, F. Addoun and J.B. Donnet, Fuel, 65, 1447 (1986); doi:10.1016/0016-2361(86)90121-3.
- W.M. Qiao and L. Liu, New Carbon Mater., 25 (1996).
References
K.F. Cen, X. Gao, M.J. Ni, R.B. Wu, G. Xiao and H.L. Zhou, J. Combustion Sci. Technol., 14 (2014).
W.-G. Li, X.-J. Gong, K. Wang, X.-R. Zhang and W.-B. Fan, Bioresour. Technol., 165, 166 (2014); doi:10.1016/j.biortech.2014.02.069.
Y. Shi, J.W. Chen, J. Chen, R.A. Macleod and M. Malac, Appl. Catal. A, 441-442, 99 (2000); doi:10.1016/j.apcata.2012.07.014.
M. Kubota, T. Ito, F. Watanabe and H. Matsuda, Appl. Therm. Eng., 31, 1495 (2011); doi:10.1016/j.applthermaleng.2011.01.036.
T.H. Liou, Chem. Eng. J., 158, 129 (2010); doi:10.1016/j.cej.2009.12.016.
L. Lin, S.R. Zhai, Z.Y. Xiao, Y. Song, Q.-D. An and X.-W. Song, Bioresour. Technol., 136, 437 (2013); doi:10.1016/j.biortech.2013.03.048.
W.M. Qiao, Q.F. Zha and L. Liu, Carbon Techniques, 4, 8 (1994).
P. Ehrburger, A. Addoun, F. Addoun and J.B. Donnet, Fuel, 65, 1447 (1986); doi:10.1016/0016-2361(86)90121-3.
W.M. Qiao and L. Liu, New Carbon Mater., 25 (1996).