Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on Straw Micron Pores Encapsulating Paraffin and Performance of Its Shape-Stabilized Phase Change Materials
Corresponding Author(s) : Guihua Hou
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
Paraffin was first encapsulated in straw by impregnation method and then the shape-stabilized straw-paraffin phase change material (SPCM) was prepared by molded method with pure acrylic emulsion as binder. The influence of impregnation temperature on the loading ratio as well as the leakage ratio of straw-paraffin phase change material under thermal cycling was investigated. The micron structure and thermal properties of straw-paraffin phase change material were analyzed by scanning electron microscopy (SEM) and differential scanning calorimeter (DSC), respectively and then influence of straw micron pores on encapsulating effectiveness were discussed. The results indicated that the loading ratios of paraffin in wheat straw at 60 and 120 °C were 319.8 % and 443.6 %, respectively. The leakage ratio of paraffin in straw-paraffin phase change material was 0.83 % at 30 phase change cycles. It was pointed that the additional pressure from capillarity on liquid in micron pores of straw can inhibit the leaking of liquid, suggesting that the micron materials were good encapsulating materials for phase change materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.P. Zhang, H.P. Hu and X.D. Kong, Energy Theory and the Application of Phase Change Storage, University of Science and Technology of China Press, Hefei, China, pp. 9-22 (1996).
- A. Sharma, V.V. Tyagi, C.R. Chen and D. Buddhi, Renew. Sustain. Energy Rev., 13, 318 (2009); doi:10.1016/j.rser.2007.10.005.
- O. Sanusi, R. Warzoha and R. Fleischer, Int. J. Heat Mass Transfer, 54, 4429 (2011); doi:10.1016/j.ijheatmasstransfer.2011.04.046.
- M. Li, Z. Wu, H. Kao and J. Tan, Energy Convers. Manage., 52, 3275 (2011); doi:10.1016/j.enconman.2011.05.015.
- J. Li, P. Xue, P. Ding, J. Han and G. Sun, Sol. Energy Mater. Sol. Cells, 93, 1761 (2009); doi:10.1016/j.solmat.2009.06.007.
- Y. Liu, X.S. Jiang, S.J. Li, et al., Mater. Rev., 309 (2011).
- Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao and Y. Fang, Appl. Energy, 91, 426 (2012); doi:10.1016/j.apenergy.2011.10.014.
- P. Zhang, Y. Hu, L. Song, J. Ni, W. Xing and J. Wang, Sol. Energy Mater. Sol. Cells, 94, 360 (2010); doi:10.1016/j.solmat.2009.10.014.
- R. Ehid, R.D. Weinstein and R.D. Fleischer, Energy Convers. Manage., 57, 60 (2012); doi:10.1016/j.enconman.2011.12.008.
- M. Mehrali, S.T. Latibari, M. Mehrali, H.S.C. Metselaar and M. Silakhori, Energy Convers. Manage., 67, 275 (2013); doi:10.1016/j.enconman.2012.11.023.
References
Y.P. Zhang, H.P. Hu and X.D. Kong, Energy Theory and the Application of Phase Change Storage, University of Science and Technology of China Press, Hefei, China, pp. 9-22 (1996).
A. Sharma, V.V. Tyagi, C.R. Chen and D. Buddhi, Renew. Sustain. Energy Rev., 13, 318 (2009); doi:10.1016/j.rser.2007.10.005.
O. Sanusi, R. Warzoha and R. Fleischer, Int. J. Heat Mass Transfer, 54, 4429 (2011); doi:10.1016/j.ijheatmasstransfer.2011.04.046.
M. Li, Z. Wu, H. Kao and J. Tan, Energy Convers. Manage., 52, 3275 (2011); doi:10.1016/j.enconman.2011.05.015.
J. Li, P. Xue, P. Ding, J. Han and G. Sun, Sol. Energy Mater. Sol. Cells, 93, 1761 (2009); doi:10.1016/j.solmat.2009.06.007.
Y. Liu, X.S. Jiang, S.J. Li, et al., Mater. Rev., 309 (2011).
Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao and Y. Fang, Appl. Energy, 91, 426 (2012); doi:10.1016/j.apenergy.2011.10.014.
P. Zhang, Y. Hu, L. Song, J. Ni, W. Xing and J. Wang, Sol. Energy Mater. Sol. Cells, 94, 360 (2010); doi:10.1016/j.solmat.2009.10.014.
R. Ehid, R.D. Weinstein and R.D. Fleischer, Energy Convers. Manage., 57, 60 (2012); doi:10.1016/j.enconman.2011.12.008.
M. Mehrali, S.T. Latibari, M. Mehrali, H.S.C. Metselaar and M. Silakhori, Energy Convers. Manage., 67, 275 (2013); doi:10.1016/j.enconman.2012.11.023.