Copyright (c) 2024 Dr Supratim Suin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Metal Organic Framework Based Membranes for Efficient Wastewater Purification: Syntheses and Applications: A Review
Corresponding Author(s) : Supratim Suin
Asian Journal of Chemistry,
Vol. 36 No. 7 (2024): Vol 36 Issue 7, 2024
Abstract
Wastewater treatment utilizing metal organic framework (MOF) based membranes have gained significant attention in recent years owing to their versatile range of properties, ease of synthesis and tunable geometry of pores. During the last decade, innumerable attempts have been executed by global scientific communities in the development of novel MOF based membranes for eliminate several constituents, such as, heavy metals, oil and micro-pollutant, organic dyes, etc. This review aims to explore the synthetic methods for MOFs, as well as, MOF based membranes for efficient water purification and their applications in removing the causes of water pollution. This study also enlighten the applications of MOFs based membranes in the desalination of brackish and seawater. So, this review covers all the key synthetic strategies of MOFs-based membranes and their use in purifying and elimination of different hazardous material of wastewater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Global Water Security: Intelligence Community Assessment; Defense Intelligence Agency (2012).
- P. Lee, Water Sustainability in the 21st Century (2019).
- T.C. Brown, V. Mahat and J.A. Ramirez, Earths Futur., 7, 219 (2019); https://doi.org/10.1029/2018EF001091
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas and A.M. Mayes, Nature, 452, 301 (2008); https://doi.org/10.1038/nature06599
- W.J. Koros and C. Zhang, Nat. Mater., 16, 289 (2017); https://doi.org/10.1038/nmat4805
- J.G. Liu and W. Yang, Science, 337, 649 (2012); https://doi.org/10.1126/science.1219471
- N. Johnson, C. Revenga and J. Echeverria, Science, 292, 1071 (2001); https://doi.org/10.1126/science.1058821
- M. Catley-Carlson, Nature, 565, 426 (2019); https://doi.org/10.1038/d41586-019-00214-w
- C.J. Vorosmarty, P. Green, J. Salisbury and R.B. Lammers, Science, 289, 284 (2000); https://doi.org/10.1126/science.289.5477.284
- A. Rolston, Nature, 536, 396 (2016); https://doi.org/10.1038/536396b
- H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech and B.D. Freeman, Science, 356, eaab0530 (2017); https://doi.org/10.1126/science.aab0530
- T. Le, X. Chen, H. Dong, W. Tarpeh, A. Perea-Cachero, J. Coronas, S.M. Martin, M. Mohammad, A. Razmjou, A.R. Esfahani, N. Koutahzadeh, P. Cheng, P.R. Kidambi and M.R. Esfahani, Ind. Eng. Chem. Res., 60, 6869 (2021); https://doi.org/10.1021/acs.iecr.1c00543
- J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen and J.T. Hupp, Chem. Soc. Rev., 38, 1450 (2009); https://doi.org/10.1039/b807080f
- J. Canivet, A. Fateeva, Y. Guo, B. Coasne and D. Farrusseng, Chem. Soc. Rev., 43, 5594 (2014); https://doi.org/10.1039/C4CS00078A
- N.C. Burtch, H. Jasuja and K.S. Walton, Chem. Rev., 114, 10575 (2014); https://doi.org/10.1021/cr5002589
- M.U. Shahid, T. Najam, M. Islam, A.M. Hassan, M.A. Assiri, A. Rauf, A. Rehman, S.S.A. Shah and M.A. Nazir, J. Water Process Eng., 57, 104676 (2024); https://doi.org/10.1016/j.jwpe.2023.104676
- F. Bigdeli, M.N.A. Fetzer, B. Nis, A. Morsali and C. Janiak, J. Mater. Chem. A, 11, 22105 (2023); https://doi.org/10.1039/D3TA03077F
- M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi and M. Khatami, Trends Anal. Chem., 118, 401 (2019); https://doi.org/10.1016/j.trac.2019.06.007
- N. Stock and S. Biswas, Chem. Rev., 112, 933 (2012); https://doi.org/10.1021/cr200304e
- M.B. Majewski, H. Noh, T. Islamoglu and O.K. Farha, J. Mater. Chem. A Mater. Energy Sustain., 6, 7338 (2018); https://doi.org/10.1039/C8TA02132E
- Z. Huang, Z.X. Yang, M.Z. Hussain, Q.L. Jia, Y.Q. Zhu and Y.D. Xia, J. Mater. Sci. Technol., 84, 76 (2021); https://doi.org/10.1016/j.jmst.2020.12.057
- Y. Cao, A. Khan, T.A. Kurniawan, R. Soltani and A.B. Albadarin, J. Mol. Liq., 336, 116189 (2021); https://doi.org/10.1016/j.molliq.2021.116189
- F. Millange, R. El Osta, M.E. Medina and R.I. Walton, CrystEngComm, 13, 103 (2011); https://doi.org/10.1039/C0CE00530D
- E. Biemmi, S. Christian, N. Stock and T. Bein, Micropor. Mesopor. Mater., 117, 111 (2009); https://doi.org/10.1016/j.micromeso.2008.06.040
- T.R.C. Van Assche, G. Desmet, R. Ameloot, D.E. De Vos, H. Terryn and J.F.M. Denayer, Micropor. Mesopor. Mater., 158, 209 (2012); https://doi.org/10.1016/j.micromeso.2012.03.029
- D. Andirova, C.F. Cogswell, Y. Lei and S. Choi, Micropor. Mesopor. Mater., 219, 276 (2016); https://doi.org/10.1016/j.micromeso.2015.07.029
- C.C. Wang, Wuji Huaxue Xuebao, 33, 713 (2017).
- T. Frišèic, D.G. Reid, I. Halasz, R.S. Stein, R.E. Dinnebier and M.J. Duer, Angew. Chem. Int. Ed., 49, 712 (2010); https://doi.org/10.1002/anie.200906583
- S. Soni, P.K. Bajpai and C. Arora, Charact. Appl. Nanomater., 3, 87 (2020); https://doi.org/10.24294/can.v3i2.551
- Y. Wu, X. Hao, J. Yang, F. Tian and M. Jiang, Mater. Lett., 60, 2764 (2006); https://doi.org/10.1016/j.matlet.2006.01.106
- J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak and C.J. Sumby, Angew. Chem. Int. Ed., 56, 9292 (2017); https://doi.org/10.1002/anie.201701109
- X. Li, Y. Liu, J. Wang, J. Gascon, J. Li and B. Van der Bruggen, Chem. Soc. Rev., 46, 7124 (2017); https://doi.org/10.1039/C7CS00575J
- S. Gai, R. Fan, J. Zhang, X. Zhou, K. Xing, K. Zhu, W. Jia, W. Sui, P. Wang and Y. Yang, J. Mater. Chem. A Mater. Energy Sustain., 9, 3369 (2021); https://doi.org/10.1039/D0TA09624E
- N.J. Vickers, Curr. Biol., 27, R713 (2017); https://doi.org/10.1016/j.cub.2017.05.064
- J. Gu, H. Fan, C. Li, J. Caro and H. Meng, Angew. Chem. Int. Ed., 58, 5297 (2019); https://doi.org/10.1002/anie.201814487
- X. Dai, Y. Cao, X. Shi and X. Wang, Adv. Mater. Interfaces, 3, 1600725 (2016); https://doi.org/10.1002/admi.201600725
- D. Ragab, H.G. Gomaa, R. Sabouni, M. Salem, M. Ren and J. Zhu, Chem. Eng. J., 300, 273 (2016); https://doi.org/10.1016/j.cej.2016.04.033
- R. Dai, H. Guo, C.Y. Tang, M. Chen, J. Li and Z. Wang, Environ. Sci. Technol., 53, 13776 (2019); https://doi.org/10.1021/acs.est.9b05343
- J. Hu, L. Zhao, J. Luo, H. Gong and N. Zhu, J. Hazard. Mater., 438, 129437 (2022); https://doi.org/10.1016/j.jhazmat.2022.129437
- W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin and C. Wang, Angew. Chem., 120, 5701 (2008); https://doi.org/10.1002/ange.200800172
- J. Yuan, W.S. Hung, H. Zhu, K. Guan, Y. Ji, Y. Mao, G. Liu, K.R. Lee and W. Jin, J. Membr. Sci., 572, 20 (2019); https://doi.org/10.1016/j.memsci.2018.10.080
- T. Li, W. Zhang, S. Zhai, G. Gao, J. Ding, W. Zhang, Y. Liu, X. Zhao, B. Pan and L. Lv, Water Res., 143, 87 (2018); https://doi.org/10.1016/j.watres.2018.06.031
- Y. Liu, S. Lin, Y. Liu, A.K. Sarkar, J.K. Bediako, H.Y. Kim and Y.S. Yun, Small, 15, 1805242 (2019); https://doi.org/10.1002/smll.201805242
- J.E. Efome, D. Rana, T. Matsuura and C.Q. Lan, J. Mater. Chem. A Mater. Energy Sustain., 6, 4550 (2018); https://doi.org/10.1039/C7TA10428F
- X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu and X. Wang, Crit. Rev. Environ. Sci. Technol., 51, 751 (2021); https://doi.org/10.1080/10643389.2020.1734433
- Y. Guo, X. Wang, P. Hu and X. Peng, Appl. Mater. Today, 5, 103 (2016); https://doi.org/10.1016/j.apmt.2016.07.007
- Y. Li, L.H. Wee, A. Volodin, J.A. Martens and I.F.J. Vankelecom, Chem. Commun., 51, 918 (2015); https://doi.org/10.1039/C4CC06699E
- Y. Chen, H. Liu, X. Hu, B. Cheng, D. Liu, Y. Zhang and S. Nair, Fibers Polym., 18, 1250 (2017); https://doi.org/10.1007/s12221-017-6814-7
- G. Yang, D. Zhang, G. Zhu, T. Zhou, M. Song, L. Qu, K. Xiong and H. Li, RSC Adv., 10, 8540 (2020); https://doi.org/10.1039/D0RA01110J
- N. Li, G. Chen, J. Zhao, B. Yan, Z. Cheng, L. Meng and V. Chen, J. Membr. Sci., 591, 117341 (2019); https://doi.org/10.1016/j.memsci.2019.117341
- S. Yu, H. Pang, S. Huang, H. Tang, S. Wang, M. Qiu, Z. Chen, H. Yang, G. Song, D. Fu, B. Hu and X. Wang, Sci. Total Environ., 800, 149662 (2021); https://doi.org/10.1016/j.scitotenv.2021.149662
- M.A. Dawoud and M.M. Al Mulla, Int. J. Environ. Sustain., 1, 22 (2012).
- Z. Hu, Y. Chen and J. Jiang, J. Chem. Phys., 134, 134705 (2011); https://doi.org/10.1063/1.3573902
- K.M. Gupta, K. Zhang and J. Jiang, Langmuir, 31, 13230 (2015); https://doi.org/10.1021/acs.langmuir.5b03593
- X. Wang, L. Zhai, Y. Wang, R. Li, X. Gu, Y. Yuan, Y. Qian, Z. Hu and D. Zhao, ACS Appl. Mater. Interfaces, 9, 37848 (2017); https://doi.org/10.1021/acsami.7b12750
- M. Kadhom, W. Hu and B. Deng, Membranes, 7, 31 (2017); https://doi.org/10.3390/membranes7020031
- A. Zirehpour, A. Rahimpour, S. Khoshhal, M.D. Firouzjaei and A.A. Ghoreyshi, RSC Adv., 6, 70174 (2016); https://doi.org/10.1039/C6RA14591D
References
Global Water Security: Intelligence Community Assessment; Defense Intelligence Agency (2012).
P. Lee, Water Sustainability in the 21st Century (2019).
T.C. Brown, V. Mahat and J.A. Ramirez, Earths Futur., 7, 219 (2019); https://doi.org/10.1029/2018EF001091
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas and A.M. Mayes, Nature, 452, 301 (2008); https://doi.org/10.1038/nature06599
W.J. Koros and C. Zhang, Nat. Mater., 16, 289 (2017); https://doi.org/10.1038/nmat4805
J.G. Liu and W. Yang, Science, 337, 649 (2012); https://doi.org/10.1126/science.1219471
N. Johnson, C. Revenga and J. Echeverria, Science, 292, 1071 (2001); https://doi.org/10.1126/science.1058821
M. Catley-Carlson, Nature, 565, 426 (2019); https://doi.org/10.1038/d41586-019-00214-w
C.J. Vorosmarty, P. Green, J. Salisbury and R.B. Lammers, Science, 289, 284 (2000); https://doi.org/10.1126/science.289.5477.284
A. Rolston, Nature, 536, 396 (2016); https://doi.org/10.1038/536396b
H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech and B.D. Freeman, Science, 356, eaab0530 (2017); https://doi.org/10.1126/science.aab0530
T. Le, X. Chen, H. Dong, W. Tarpeh, A. Perea-Cachero, J. Coronas, S.M. Martin, M. Mohammad, A. Razmjou, A.R. Esfahani, N. Koutahzadeh, P. Cheng, P.R. Kidambi and M.R. Esfahani, Ind. Eng. Chem. Res., 60, 6869 (2021); https://doi.org/10.1021/acs.iecr.1c00543
J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen and J.T. Hupp, Chem. Soc. Rev., 38, 1450 (2009); https://doi.org/10.1039/b807080f
J. Canivet, A. Fateeva, Y. Guo, B. Coasne and D. Farrusseng, Chem. Soc. Rev., 43, 5594 (2014); https://doi.org/10.1039/C4CS00078A
N.C. Burtch, H. Jasuja and K.S. Walton, Chem. Rev., 114, 10575 (2014); https://doi.org/10.1021/cr5002589
M.U. Shahid, T. Najam, M. Islam, A.M. Hassan, M.A. Assiri, A. Rauf, A. Rehman, S.S.A. Shah and M.A. Nazir, J. Water Process Eng., 57, 104676 (2024); https://doi.org/10.1016/j.jwpe.2023.104676
F. Bigdeli, M.N.A. Fetzer, B. Nis, A. Morsali and C. Janiak, J. Mater. Chem. A, 11, 22105 (2023); https://doi.org/10.1039/D3TA03077F
M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi and M. Khatami, Trends Anal. Chem., 118, 401 (2019); https://doi.org/10.1016/j.trac.2019.06.007
N. Stock and S. Biswas, Chem. Rev., 112, 933 (2012); https://doi.org/10.1021/cr200304e
M.B. Majewski, H. Noh, T. Islamoglu and O.K. Farha, J. Mater. Chem. A Mater. Energy Sustain., 6, 7338 (2018); https://doi.org/10.1039/C8TA02132E
Z. Huang, Z.X. Yang, M.Z. Hussain, Q.L. Jia, Y.Q. Zhu and Y.D. Xia, J. Mater. Sci. Technol., 84, 76 (2021); https://doi.org/10.1016/j.jmst.2020.12.057
Y. Cao, A. Khan, T.A. Kurniawan, R. Soltani and A.B. Albadarin, J. Mol. Liq., 336, 116189 (2021); https://doi.org/10.1016/j.molliq.2021.116189
F. Millange, R. El Osta, M.E. Medina and R.I. Walton, CrystEngComm, 13, 103 (2011); https://doi.org/10.1039/C0CE00530D
E. Biemmi, S. Christian, N. Stock and T. Bein, Micropor. Mesopor. Mater., 117, 111 (2009); https://doi.org/10.1016/j.micromeso.2008.06.040
T.R.C. Van Assche, G. Desmet, R. Ameloot, D.E. De Vos, H. Terryn and J.F.M. Denayer, Micropor. Mesopor. Mater., 158, 209 (2012); https://doi.org/10.1016/j.micromeso.2012.03.029
D. Andirova, C.F. Cogswell, Y. Lei and S. Choi, Micropor. Mesopor. Mater., 219, 276 (2016); https://doi.org/10.1016/j.micromeso.2015.07.029
C.C. Wang, Wuji Huaxue Xuebao, 33, 713 (2017).
T. Frišèic, D.G. Reid, I. Halasz, R.S. Stein, R.E. Dinnebier and M.J. Duer, Angew. Chem. Int. Ed., 49, 712 (2010); https://doi.org/10.1002/anie.200906583
S. Soni, P.K. Bajpai and C. Arora, Charact. Appl. Nanomater., 3, 87 (2020); https://doi.org/10.24294/can.v3i2.551
Y. Wu, X. Hao, J. Yang, F. Tian and M. Jiang, Mater. Lett., 60, 2764 (2006); https://doi.org/10.1016/j.matlet.2006.01.106
J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak and C.J. Sumby, Angew. Chem. Int. Ed., 56, 9292 (2017); https://doi.org/10.1002/anie.201701109
X. Li, Y. Liu, J. Wang, J. Gascon, J. Li and B. Van der Bruggen, Chem. Soc. Rev., 46, 7124 (2017); https://doi.org/10.1039/C7CS00575J
S. Gai, R. Fan, J. Zhang, X. Zhou, K. Xing, K. Zhu, W. Jia, W. Sui, P. Wang and Y. Yang, J. Mater. Chem. A Mater. Energy Sustain., 9, 3369 (2021); https://doi.org/10.1039/D0TA09624E
N.J. Vickers, Curr. Biol., 27, R713 (2017); https://doi.org/10.1016/j.cub.2017.05.064
J. Gu, H. Fan, C. Li, J. Caro and H. Meng, Angew. Chem. Int. Ed., 58, 5297 (2019); https://doi.org/10.1002/anie.201814487
X. Dai, Y. Cao, X. Shi and X. Wang, Adv. Mater. Interfaces, 3, 1600725 (2016); https://doi.org/10.1002/admi.201600725
D. Ragab, H.G. Gomaa, R. Sabouni, M. Salem, M. Ren and J. Zhu, Chem. Eng. J., 300, 273 (2016); https://doi.org/10.1016/j.cej.2016.04.033
R. Dai, H. Guo, C.Y. Tang, M. Chen, J. Li and Z. Wang, Environ. Sci. Technol., 53, 13776 (2019); https://doi.org/10.1021/acs.est.9b05343
J. Hu, L. Zhao, J. Luo, H. Gong and N. Zhu, J. Hazard. Mater., 438, 129437 (2022); https://doi.org/10.1016/j.jhazmat.2022.129437
W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin and C. Wang, Angew. Chem., 120, 5701 (2008); https://doi.org/10.1002/ange.200800172
J. Yuan, W.S. Hung, H. Zhu, K. Guan, Y. Ji, Y. Mao, G. Liu, K.R. Lee and W. Jin, J. Membr. Sci., 572, 20 (2019); https://doi.org/10.1016/j.memsci.2018.10.080
T. Li, W. Zhang, S. Zhai, G. Gao, J. Ding, W. Zhang, Y. Liu, X. Zhao, B. Pan and L. Lv, Water Res., 143, 87 (2018); https://doi.org/10.1016/j.watres.2018.06.031
Y. Liu, S. Lin, Y. Liu, A.K. Sarkar, J.K. Bediako, H.Y. Kim and Y.S. Yun, Small, 15, 1805242 (2019); https://doi.org/10.1002/smll.201805242
J.E. Efome, D. Rana, T. Matsuura and C.Q. Lan, J. Mater. Chem. A Mater. Energy Sustain., 6, 4550 (2018); https://doi.org/10.1039/C7TA10428F
X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu and X. Wang, Crit. Rev. Environ. Sci. Technol., 51, 751 (2021); https://doi.org/10.1080/10643389.2020.1734433
Y. Guo, X. Wang, P. Hu and X. Peng, Appl. Mater. Today, 5, 103 (2016); https://doi.org/10.1016/j.apmt.2016.07.007
Y. Li, L.H. Wee, A. Volodin, J.A. Martens and I.F.J. Vankelecom, Chem. Commun., 51, 918 (2015); https://doi.org/10.1039/C4CC06699E
Y. Chen, H. Liu, X. Hu, B. Cheng, D. Liu, Y. Zhang and S. Nair, Fibers Polym., 18, 1250 (2017); https://doi.org/10.1007/s12221-017-6814-7
G. Yang, D. Zhang, G. Zhu, T. Zhou, M. Song, L. Qu, K. Xiong and H. Li, RSC Adv., 10, 8540 (2020); https://doi.org/10.1039/D0RA01110J
N. Li, G. Chen, J. Zhao, B. Yan, Z. Cheng, L. Meng and V. Chen, J. Membr. Sci., 591, 117341 (2019); https://doi.org/10.1016/j.memsci.2019.117341
S. Yu, H. Pang, S. Huang, H. Tang, S. Wang, M. Qiu, Z. Chen, H. Yang, G. Song, D. Fu, B. Hu and X. Wang, Sci. Total Environ., 800, 149662 (2021); https://doi.org/10.1016/j.scitotenv.2021.149662
M.A. Dawoud and M.M. Al Mulla, Int. J. Environ. Sustain., 1, 22 (2012).
Z. Hu, Y. Chen and J. Jiang, J. Chem. Phys., 134, 134705 (2011); https://doi.org/10.1063/1.3573902
K.M. Gupta, K. Zhang and J. Jiang, Langmuir, 31, 13230 (2015); https://doi.org/10.1021/acs.langmuir.5b03593
X. Wang, L. Zhai, Y. Wang, R. Li, X. Gu, Y. Yuan, Y. Qian, Z. Hu and D. Zhao, ACS Appl. Mater. Interfaces, 9, 37848 (2017); https://doi.org/10.1021/acsami.7b12750
M. Kadhom, W. Hu and B. Deng, Membranes, 7, 31 (2017); https://doi.org/10.3390/membranes7020031
A. Zirehpour, A. Rahimpour, S. Khoshhal, M.D. Firouzjaei and A.A. Ghoreyshi, RSC Adv., 6, 70174 (2016); https://doi.org/10.1039/C6RA14591D