Copyright (c) 2024 Dr Brahamdutt Arya, Manisha, Vijay Dangi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Studies on Reactivity Indices, Electronic, Optical and Thermodynamics Properties of Pentacene-Tetrapyrrole Derivatives using DFT Method
Corresponding Author(s) : Brahamdutt Arya
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
A detailed theoretical analysis of the electronic properties, reactivity indices, optical and thermodynamic properties of pentacene-tetrapyrrole (PTP) molecules utilizing the DFT and TD-DFT methods at 6-311(d,p) basis set is conducted. The thermodynamic properties and molecule electrostatic potential were computed using the DFT/B3LYP/6-311(d,p) technique. The electronic properties, reactivity indices and optical properties were determined using the TD-DFT/6-311(d,p) at several functionals: B3LYP, CAM-B3LYP, B3PW91, PBEPBE and WB97XD. The change in electronic properties, reactivity indices, optical and thermodynamic properties were also investigated with variation in the position of the –NH group at the pentacene’s periphery from inward to outward and central benzene ring of pentacene with nitrogen containing cyclic rings such as pyrrole in pentacene-tetrapyrrole derivatives.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Sutton, J.S. Sears, V. Coropceanu and J.-L. Brédas, J. Phys. Chem. Lett., 4, 919 (2013); https://doi.org/10.1021/jz3021292
- K. Bouchouit, Z. Sofiani, B. Derkowska, S. Abed, N. Benali-Cherif, M. Bakasse and B. Sahraoui, Opt. Commun., 278, 180 (2007); https://doi.org/10.1016/j.optcom.2007.05.068
- K. Bouchouit, Z. Essaidi, S. Abed, A. Migalska-Zalas, B. Derkowska, N. Benali-cherif, M. Mihaly, A. Meghea and B. Sahraoui, Chem. Phys. Lett., 455, 270 (2008); https://doi.org/10.1016/j.cplett.2008.02.101
- K. Bouchouit, H. Bougharraf, B. Derkowska-Zielinska, N. Benali-cherif and B. Sahraoui, Opt. Mater., 48, 215 (2015); https://doi.org/10.1016/j.optmat.2015.07.035
- F. Aziz, M. Hassan Sayyad, K. Sulaiman, B.H. Majlis, K.S. Karimov, Z. Ahmad and G. Sugandi, Meas. Sci. Technol., 23, 014001 (2012); https://doi.org/10.1088/0957-0233/23/1/014001
- M. Murugavelu, P.K.M. Imran, K.R. Sankaran and S. Nagarajan, Mater. Sci. Semicond. Process., 16, 461 (2013); https://doi.org/10.1016/j.mssp.2012.08.001
- Y. Che, X. Yang, G. Liu, C. Yu, H. Ji, J. Zuo, J. Zhao and L. Zang, J. Am. Chem. Soc., 132, 5743 (2010); https://doi.org/10.1021/ja909797q
- M. Guan, L. Li, G. Cao, Y. Zhang, B. Wang, X. Chu, Z. Zhu and Y. Zeng, Org. Electron., 12, 2090 (2011); https://doi.org/10.1016/j.orgel.2011.09.003
- H.-R. Tseng, H. Phan, C. Luo, M. Wang, L.A. Perez, S.N. Patel, L. Ying, E.J. Kramer, T.-Q. Nguyen, G.C. Bazan and A.J. Heeger, Adv. Mater., 26, 2993 (2014); https://doi.org/10.1002/adma.201305084
- L. Xiao-Hong, C. Hong-Ling, Z. Rui-Zhou and Z. Xian-Zhou, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 321 (2015); https://doi.org/10.1016/j.saa.2014.08.036
- M. Yoosuf Ameen, T. Abhijith, S. De, S.K. Ray and V.S. Reddy, Org. Electron., 14, 554 (2013); https://doi.org/10.1016/j.orgel.2012.12.012
- Z. Liu, M. Kobayashi, B.C. Paul, Z. Bao and Y. Nishi, Phys. Rev. B Condens. Matter Mater. Phys., 82, 035311 (2010); https://doi.org/10.1103/PhysRevB.82.035311
- M. Ball, Y. Zhong, Y. Wu, C. Schenck, F. Ng, M. Steigerwald, S. Xiao and C. Nuckolls, Acc. Chem. Res., 48, 267 (2015); https://doi.org/10.1021/ar500355d
- W. Pisula, X. Feng and K. Müllen, Chem. Mater., 23, 554 (2011); https://doi.org/10.1021/cm102252w
- Z. Sun, Q. Ye, C. Chi and J. Wu, Chem. Soc. Rev., 41, 7857 (2012); https://doi.org/10.1039/c2cs35211g
- W. Chen, X. Li, G. Long, Y. Li, R. Ganguly, M. Zhang, N. Aratani, H. Yamada, M. Liu and Q. Zhang, Angew. Chem., 130, 13743 (2018); https://doi.org/10.1002/ange.201808779
- J. Li, S. Chen, Z. Wang and Q. Zhang, Chem. Rec., 16, 1518 (2016); https://doi.org/10.1002/tcr.201600015
- R. Rieger and K. Müllen, J. Phys. Org. Chem., 23, 315 (2010); https://doi.org/10.1002/poc.1644
- A. Narita, X.-Y. Wang, X. Feng and K. Müllen, Chem. Soc. Rev., 44, 6616 (2015); https://doi.org/10.1039/C5CS00183H
- Z. Sun and J. Wu, J. Mater. Chem., 22, 4151 (2012); https://doi.org/10.1039/C1JM14786B
- P.-Y. Gu, Y. Zhao, J.-H. He, J. Zhang, C. Wang, Q.-F. Xu, J.-M. Lu, X.W. Sun and Q. Zhang, J. Org. Chem., 80, 3030 (2015); https://doi.org/10.1021/jo5027707
- P.Y. Gu, Z. Wang, G. Liu, H. Yao, Z. Wang, Y. Li, J. Zhu, S. Li and Q. Zhang, Chem. Mater., 29, 4172 (2017); https://doi.org/10.1021/acs.chemmater.7b01318
- L. Ji, A. Friedrich, I. Krummenacher, A. Eichhorn, H. Braunschweig, M. Moos, S. Hahn, F.L. Geyer, O. Tverskoy, J. Han, C. Lambert, A. Dreuw, T.B. Marder and U.H.F. Bunz, J. Am. Chem. Soc., 139, 15968 (2017); https://doi.org/10.1021/jacs.7b09460
- M. Richter, K.S. Schellhammer, P. Machata, G. Cuniberti, A. Popov, F. Ortmann, R. Berger, K. Müllen and X. Feng, Org. Chem. Front., 4, 847 (2017); https://doi.org/10.1039/C7QO00180K
- Z. Wang, P. Gu, G. Liu, H. Yao, Y. Wu, Y. Li, G. Rakesh, J. Zhu, H. Fu and Q. Zhang, Chem. Commun., 53, 7772 (2017); https://doi.org/10.1039/C7CC03898D
- A. Mateo-Alonso, Chem. Soc. Rev., 43, 6311 (2014); https://doi.org/10.1039/C4CS00119B
- U.H.F. Bunz, Acc. Chem. Res., 48, 1676 (2015); https://doi.org/10.1021/acs.accounts.5b00118
- A. Irfan, A.R. Chaudhary, S. Muhammad, A.G. Al-Sehemi, H. Bo, M.W. Mumtaz and M.A. Qayyum, Results Phys., 11, 599 (2018); https://doi.org/10.1016/j.rinp.2018.09.052
- V.M. Vidya and P. Chetti, J. Phys. Org. Chem., 34, e4128 (2021); https://doi.org/10.1002/poc.4128
- N.N. Tri, L.V. Duong and M.T. Nguyen, Mater. Today Commun., 24, 101054 (2020); https://doi.org/10.1016/j.mtcomm.2020.101054
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X.Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K.Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
- N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
- O.E. Oyeneyin, Phys. Sci. Int. J., 16, 1 (2017); https://doi.org/10.9734/PSIJ/2017/36555
- M.F. Khan, R.B. Rashid, M.A. Hossain and M.A. Rashid, Dhaka Univ. J. Pharm. Sci., 16, 1 (2017); https://doi.org/10.3329/dujps.v16i1.33376
- K.K. Srivastava, S. Srivastava and T. Alam, Pelagia Res. Libr., 5, 288 (2014).
- J.L. Gázquez, A. Cedillo and A. Vela, J. Phys. Chem. A, 111, 1966 (2007); https://doi.org/10.1021/jp065459f
- P.K. Chattaraj, A. Chakraborty and S. Giri, J. Phys. Chem. A, 113, 10068 (2009); https://doi.org/10.1021/jp904674x
- R. Contreras, J. Andres, V.S. Safont, P. Campodonico and J.G. Santos, J. Phys. Chem. A, 107, 5588 (2003); https://doi.org/10.1021/jp0302865
- A. Cedillo, R. Contreras, M. Galván, A. Aizman, J. Andrés and V.S. Safont, J. Phys. Chem. A, 111, 2442 (2007); https://doi.org/10.1021/jp068459o
- P. Jaramillo, P. Pérez, R. Contreras, W. Tiznado and P. Fuentealba, J. Phys. Chem. A, 110, 8181 (2006); https://doi.org/10.1021/jp057351q
- P. Campodonico, J.G. Santos, J. Andres and R. Contreras, J. Phys. Org. Chem., 17, 273 (2004); https://doi.org/10.1002/poc.719
- T. Karakurt, M. Dinçer, A. Çetin and M. Sekerci, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 189 (2010); https://doi.org/10.1016/j.saa.2010.05.006
- J. Zhang, Y.-H. Kan, H.-B. Li, Y. Geng, Y. Wu and Z.-M. Su, Dyes Pigments, 95, 313 (2012); https://doi.org/10.1016/j.dyepig.2012.05.020
- R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, J. Chem. Phys., 68, 3801 (1978); https://doi.org/10.1063/1.436185
- R.G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963); https://doi.org/10.1021/ja00905a001
- R.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983); https://doi.org/10.1021/ja00364a005
- R.G. Parr, L. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
References
C. Sutton, J.S. Sears, V. Coropceanu and J.-L. Brédas, J. Phys. Chem. Lett., 4, 919 (2013); https://doi.org/10.1021/jz3021292
K. Bouchouit, Z. Sofiani, B. Derkowska, S. Abed, N. Benali-Cherif, M. Bakasse and B. Sahraoui, Opt. Commun., 278, 180 (2007); https://doi.org/10.1016/j.optcom.2007.05.068
K. Bouchouit, Z. Essaidi, S. Abed, A. Migalska-Zalas, B. Derkowska, N. Benali-cherif, M. Mihaly, A. Meghea and B. Sahraoui, Chem. Phys. Lett., 455, 270 (2008); https://doi.org/10.1016/j.cplett.2008.02.101
K. Bouchouit, H. Bougharraf, B. Derkowska-Zielinska, N. Benali-cherif and B. Sahraoui, Opt. Mater., 48, 215 (2015); https://doi.org/10.1016/j.optmat.2015.07.035
F. Aziz, M. Hassan Sayyad, K. Sulaiman, B.H. Majlis, K.S. Karimov, Z. Ahmad and G. Sugandi, Meas. Sci. Technol., 23, 014001 (2012); https://doi.org/10.1088/0957-0233/23/1/014001
M. Murugavelu, P.K.M. Imran, K.R. Sankaran and S. Nagarajan, Mater. Sci. Semicond. Process., 16, 461 (2013); https://doi.org/10.1016/j.mssp.2012.08.001
Y. Che, X. Yang, G. Liu, C. Yu, H. Ji, J. Zuo, J. Zhao and L. Zang, J. Am. Chem. Soc., 132, 5743 (2010); https://doi.org/10.1021/ja909797q
M. Guan, L. Li, G. Cao, Y. Zhang, B. Wang, X. Chu, Z. Zhu and Y. Zeng, Org. Electron., 12, 2090 (2011); https://doi.org/10.1016/j.orgel.2011.09.003
H.-R. Tseng, H. Phan, C. Luo, M. Wang, L.A. Perez, S.N. Patel, L. Ying, E.J. Kramer, T.-Q. Nguyen, G.C. Bazan and A.J. Heeger, Adv. Mater., 26, 2993 (2014); https://doi.org/10.1002/adma.201305084
L. Xiao-Hong, C. Hong-Ling, Z. Rui-Zhou and Z. Xian-Zhou, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 321 (2015); https://doi.org/10.1016/j.saa.2014.08.036
M. Yoosuf Ameen, T. Abhijith, S. De, S.K. Ray and V.S. Reddy, Org. Electron., 14, 554 (2013); https://doi.org/10.1016/j.orgel.2012.12.012
Z. Liu, M. Kobayashi, B.C. Paul, Z. Bao and Y. Nishi, Phys. Rev. B Condens. Matter Mater. Phys., 82, 035311 (2010); https://doi.org/10.1103/PhysRevB.82.035311
M. Ball, Y. Zhong, Y. Wu, C. Schenck, F. Ng, M. Steigerwald, S. Xiao and C. Nuckolls, Acc. Chem. Res., 48, 267 (2015); https://doi.org/10.1021/ar500355d
W. Pisula, X. Feng and K. Müllen, Chem. Mater., 23, 554 (2011); https://doi.org/10.1021/cm102252w
Z. Sun, Q. Ye, C. Chi and J. Wu, Chem. Soc. Rev., 41, 7857 (2012); https://doi.org/10.1039/c2cs35211g
W. Chen, X. Li, G. Long, Y. Li, R. Ganguly, M. Zhang, N. Aratani, H. Yamada, M. Liu and Q. Zhang, Angew. Chem., 130, 13743 (2018); https://doi.org/10.1002/ange.201808779
J. Li, S. Chen, Z. Wang and Q. Zhang, Chem. Rec., 16, 1518 (2016); https://doi.org/10.1002/tcr.201600015
R. Rieger and K. Müllen, J. Phys. Org. Chem., 23, 315 (2010); https://doi.org/10.1002/poc.1644
A. Narita, X.-Y. Wang, X. Feng and K. Müllen, Chem. Soc. Rev., 44, 6616 (2015); https://doi.org/10.1039/C5CS00183H
Z. Sun and J. Wu, J. Mater. Chem., 22, 4151 (2012); https://doi.org/10.1039/C1JM14786B
P.-Y. Gu, Y. Zhao, J.-H. He, J. Zhang, C. Wang, Q.-F. Xu, J.-M. Lu, X.W. Sun and Q. Zhang, J. Org. Chem., 80, 3030 (2015); https://doi.org/10.1021/jo5027707
P.Y. Gu, Z. Wang, G. Liu, H. Yao, Z. Wang, Y. Li, J. Zhu, S. Li and Q. Zhang, Chem. Mater., 29, 4172 (2017); https://doi.org/10.1021/acs.chemmater.7b01318
L. Ji, A. Friedrich, I. Krummenacher, A. Eichhorn, H. Braunschweig, M. Moos, S. Hahn, F.L. Geyer, O. Tverskoy, J. Han, C. Lambert, A. Dreuw, T.B. Marder and U.H.F. Bunz, J. Am. Chem. Soc., 139, 15968 (2017); https://doi.org/10.1021/jacs.7b09460
M. Richter, K.S. Schellhammer, P. Machata, G. Cuniberti, A. Popov, F. Ortmann, R. Berger, K. Müllen and X. Feng, Org. Chem. Front., 4, 847 (2017); https://doi.org/10.1039/C7QO00180K
Z. Wang, P. Gu, G. Liu, H. Yao, Y. Wu, Y. Li, G. Rakesh, J. Zhu, H. Fu and Q. Zhang, Chem. Commun., 53, 7772 (2017); https://doi.org/10.1039/C7CC03898D
A. Mateo-Alonso, Chem. Soc. Rev., 43, 6311 (2014); https://doi.org/10.1039/C4CS00119B
U.H.F. Bunz, Acc. Chem. Res., 48, 1676 (2015); https://doi.org/10.1021/acs.accounts.5b00118
A. Irfan, A.R. Chaudhary, S. Muhammad, A.G. Al-Sehemi, H. Bo, M.W. Mumtaz and M.A. Qayyum, Results Phys., 11, 599 (2018); https://doi.org/10.1016/j.rinp.2018.09.052
V.M. Vidya and P. Chetti, J. Phys. Org. Chem., 34, e4128 (2021); https://doi.org/10.1002/poc.4128
N.N. Tri, L.V. Duong and M.T. Nguyen, Mater. Today Commun., 24, 101054 (2020); https://doi.org/10.1016/j.mtcomm.2020.101054
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X.Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K.Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
O.E. Oyeneyin, Phys. Sci. Int. J., 16, 1 (2017); https://doi.org/10.9734/PSIJ/2017/36555
M.F. Khan, R.B. Rashid, M.A. Hossain and M.A. Rashid, Dhaka Univ. J. Pharm. Sci., 16, 1 (2017); https://doi.org/10.3329/dujps.v16i1.33376
K.K. Srivastava, S. Srivastava and T. Alam, Pelagia Res. Libr., 5, 288 (2014).
J.L. Gázquez, A. Cedillo and A. Vela, J. Phys. Chem. A, 111, 1966 (2007); https://doi.org/10.1021/jp065459f
P.K. Chattaraj, A. Chakraborty and S. Giri, J. Phys. Chem. A, 113, 10068 (2009); https://doi.org/10.1021/jp904674x
R. Contreras, J. Andres, V.S. Safont, P. Campodonico and J.G. Santos, J. Phys. Chem. A, 107, 5588 (2003); https://doi.org/10.1021/jp0302865
A. Cedillo, R. Contreras, M. Galván, A. Aizman, J. Andrés and V.S. Safont, J. Phys. Chem. A, 111, 2442 (2007); https://doi.org/10.1021/jp068459o
P. Jaramillo, P. Pérez, R. Contreras, W. Tiznado and P. Fuentealba, J. Phys. Chem. A, 110, 8181 (2006); https://doi.org/10.1021/jp057351q
P. Campodonico, J.G. Santos, J. Andres and R. Contreras, J. Phys. Org. Chem., 17, 273 (2004); https://doi.org/10.1002/poc.719
T. Karakurt, M. Dinçer, A. Çetin and M. Sekerci, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 189 (2010); https://doi.org/10.1016/j.saa.2010.05.006
J. Zhang, Y.-H. Kan, H.-B. Li, Y. Geng, Y. Wu and Z.-M. Su, Dyes Pigments, 95, 313 (2012); https://doi.org/10.1016/j.dyepig.2012.05.020
R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, J. Chem. Phys., 68, 3801 (1978); https://doi.org/10.1063/1.436185
R.G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963); https://doi.org/10.1021/ja00905a001
R.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983); https://doi.org/10.1021/ja00364a005
R.G. Parr, L. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x