Copyright (c) 2024 ROSLAILI YUHANIS RAMLI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Limiting Molar Conductivity Dynamics of κcar/PEO/NaClO4 Aqueous Electrolyte System at Different Temperature
Corresponding Author(s) : Roslaili Yuhanis Binti Ramli
Asian Journal of Chemistry,
Vol. 36 No. 6 (2024): Vol 36 Issue 6, 2024
Abstract
The limiting molar conductivity behaviour (Λo) of κcar/PEO/NaClO4 blend liquid electrolyte systems in aqueous solution at 20 and 25 ºC was studied. The ionic conductivity (κ) of the electrolyte system was measured using Mettler Toledo Seven Compact S230 AC conductivity meter. The κ of the electrolyte was measured at a range of salt concentration, Csalt (10-5-10-8) and at different polymer concentration, Cpoly (0.001-0.003 g cm-3). The data analysis showed a directly proportion relation between Λo and Cpoly, which indicates a decrease in total salt dissociation (α) and consequently, an increase in the formation of ion pairing occurs due to the increase in salt dissociation and less dynamic volume. In addition, a direct relation between Λo and temperature was also observed. An increase in temperature causes a decrease in the total ion pairing while increase the ion movement.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Renault, S. Gottis, A.-L. Barrès, M. Courty, O. Chauvet, F. Dolhembd and P. Poizot, Energy Environ. Sci., 6, 2124 (2013); https://doi.org/10.1039/c3ee40878g
- P.K. Varshney and S. Gupta, Ionics, 17, 479 (2011); https://doi.org/10.1007/s11581-011-0563-1
- M. Rayung, M.M. Aung, S.C. Azhar, L.C. Abdullah, M.S. Su’ait, A. Ahmad and S.N.A.M. Jamil, Materials, 13, 838 (2020); https://doi.org/10.3390/ma13040838
- M.B. Armand, Annu. Rev. Mater. Sci., 16, 245 (1986); https://doi.org/10.1146/annurev.ms.16.080186.001333
- K.S. Ngai, S. Ramesh, K. Ramesh and J.C. Juan, Ionics, 22, 1259 (2016); https://doi.org/10.1007/s11581-016-1756-4
- F.N. Jumaah, N.N. Mobarak, A. Ahmad, M.A. Ghani and M.Y.A. Rahman, Ionics, 21, 1311 (2014); https://doi.org/10.1007/s11581-014-1306-x
- R. Zakaria and A.M.M. Ali, Scientific Res. J., 17, 119 (2020); https://doi.org/10.24191/srj.v17i2.7266
- T. Bhattacharyya, C.S. Palla, D.H. Dethe and Y.M. Joshi, Food Hydrocoll., 146, 109298 (2024); https://doi.org/10.1016/j.foodhyd.2023.109298
- S.W. Chan, H. Mirhosseini, F.S. Taip, T.C. Ling and C.P. Tan, Food Hydrocoll., 30, 581 (2013); https://doi.org/10.1016/j.foodhyd.2012.07.010
- J. Guo, X. Shang, P. Chen and X. Huang, Carbohydr. Polym., 302, 120374 (2023); https://doi.org/10.1016/j.carbpol.2022.120374
- J. Necas and L. Bartosikova, Veterinární Medicína, 58, 187 (2013); https://doi.org/10.17221/6758-vetmed
- Y.W. Wardhana, N. Aanisah, I. Sopyan, R. Hendriani and A.Y. Chaerunisaa, Gels, 8, 752 (2022); https://doi.org/10.3390/gels8110752
- W.A.K. Mahmood, M.M.R. Khan and T.C. Yee, J. Phys. Sci., 25, 123 (2014).
- N.N. Mobarak, N. Ramli, A. Ahmad and M.Y.A. Rahman, Solid State Ion., 224, 51 (2012); https://doi.org/10.1016/j.ssi.2012.07.010
- C.P. Rhodes, Ph.D. Thesis, Crysalline and Amorphous Phases in Polymer Electrolytes and Model Systems, University of Oklahoma, USA (2001).
- M. Marzantowicz, J.R. Dygas, F. Krok, Z. Florjañczyk and E. Zygadlo-Monikowska, J. Non-crystalline Solids, 352, 5216 (2006); https://doi.org/10.1016/j.jnoncrysol.2006.02.161
- Z. Xue, D. He and X. Xie, J. Mater. Chem. A Mater. Energy Sustain., 3, 19218 (2015); https://doi.org/10.1039/C5TA03471J
- A. Arya and A.L. Sharma, J. Mater. Sci. Mater. Electron., 29, 17903 (2018); https://doi.org/10.1007/s10854-018-9905-3
- H.T. Ahmed and O. Gh, Polymers, 11, 853 (2019); https://doi.org/10.3390/polym11050853
- S.N.A.M. Johari, N.A. Tajuddin, H. Hanibah and S.K. Deraman, Int. J. Electrochem. Sci., 16, 211049 (2021); https://doi.org/10.20964/2021.10.53
- W.R. Blakemore and A.R. Harpell, Carrageenan, In: Food Stabilisers, Thickeners and Gelling Agents, Blackwell Publishing Ltd., pp. 73–94 (2019).
- M.A.M. Tajudin, H. Hanibah and D. Darji, Asian J. Chem., 35, 3111 (2023); https://doi.org/10.14233/ajchem.2023.30627
- H. Hanibah, A. Ahmad and N.H. Hassan, AIP Conf. Proc., 1614, 295 (2014); https://doi.org/10.1063/1.4895211
- N.T.M. Balakrishnan, A. Das, J.D. Joyner, M.J.J. Fatima, L.R. Raphael, A. Pullanchiyodan and P. Raghavan, Mater. Today Chem., 29, 101407 (2023); https://doi.org/10.1016/j.mtchem.2023.101407
- H. Hanibah, Ph.D. Thesis, Salt-Polymer-Solvent Ternary Electrolyte System: Salt Solubility and Ion Mobility of LiClO4 in Polymer Solution, Universiti Kebangsaan Malaysia (2015).
- S. Chen, Y. Chen, X. Mu, P. Wang, L. Miao, S. Tanemura and H. Cai, Sustainable Mater. Technol., 36, e00635 (2023); https://doi.org/10.1016/j.susmat.2023.e00635
- W.M. Haynes, CRC Handbook of Chemistry and Physics, Taylor & Francis Ltd., edn 95 (2014).
- M.S. Ding, K. Xu, S.S. Zhang, K. Amine, G.L. Henriksen and T.R. Jow, J. Electrochem. Soc., 148, A1196 (2001); https://doi.org/10.1149/1.1403730
- S.I. Smedley, The Interpretation of Ionic Conductivity in Liquids, Springer Science & Business Media (2012).
- M.S. Zainudin Ithnin, H. Hanibah, S.K. Navaratnam and F.W. Azman, Malaysian J. Chem., 25, 108 (2023); https://doi.org/10.55373/mjchem.v25i4.99
- H. Hanibah, N.Z.N. Hashim and I.J. Shamsudin, AIP Conf. Proc., 1877, 050003 (2017); https://doi.org/10.1063/1.4999877
- A. Szczêsna-Chrzan, M. Vogler, P. Yan, G.Z. Zukowska, C. Wölke, A. Ostrowska, S. Szymanska, M. Marcinek, M. Winter, I. Cekic-Laskovic, W. Wieczorek and H.S. Stein, J. Mater. Chem. A Mater. Energy Sustain., 11, 13483 (2023); https://doi.org/10.1039/d3ta01217d
- M.S. Ding and T.R. Jow, J. Electrochem. Soc., 151, A2007 (2004); https://doi.org/10.1149/1.1809575
- J.Y. Tae, L.A. Patel, M.J. Vigil, K.A. Maerzke, A.T. Findikoglu and R.P. Currier, J. Chem. Phys., 151, (2019); https://doi.org/10.1063/1.5128671
References
S. Renault, S. Gottis, A.-L. Barrès, M. Courty, O. Chauvet, F. Dolhembd and P. Poizot, Energy Environ. Sci., 6, 2124 (2013); https://doi.org/10.1039/c3ee40878g
P.K. Varshney and S. Gupta, Ionics, 17, 479 (2011); https://doi.org/10.1007/s11581-011-0563-1
M. Rayung, M.M. Aung, S.C. Azhar, L.C. Abdullah, M.S. Su’ait, A. Ahmad and S.N.A.M. Jamil, Materials, 13, 838 (2020); https://doi.org/10.3390/ma13040838
M.B. Armand, Annu. Rev. Mater. Sci., 16, 245 (1986); https://doi.org/10.1146/annurev.ms.16.080186.001333
K.S. Ngai, S. Ramesh, K. Ramesh and J.C. Juan, Ionics, 22, 1259 (2016); https://doi.org/10.1007/s11581-016-1756-4
F.N. Jumaah, N.N. Mobarak, A. Ahmad, M.A. Ghani and M.Y.A. Rahman, Ionics, 21, 1311 (2014); https://doi.org/10.1007/s11581-014-1306-x
R. Zakaria and A.M.M. Ali, Scientific Res. J., 17, 119 (2020); https://doi.org/10.24191/srj.v17i2.7266
T. Bhattacharyya, C.S. Palla, D.H. Dethe and Y.M. Joshi, Food Hydrocoll., 146, 109298 (2024); https://doi.org/10.1016/j.foodhyd.2023.109298
S.W. Chan, H. Mirhosseini, F.S. Taip, T.C. Ling and C.P. Tan, Food Hydrocoll., 30, 581 (2013); https://doi.org/10.1016/j.foodhyd.2012.07.010
J. Guo, X. Shang, P. Chen and X. Huang, Carbohydr. Polym., 302, 120374 (2023); https://doi.org/10.1016/j.carbpol.2022.120374
J. Necas and L. Bartosikova, Veterinární Medicína, 58, 187 (2013); https://doi.org/10.17221/6758-vetmed
Y.W. Wardhana, N. Aanisah, I. Sopyan, R. Hendriani and A.Y. Chaerunisaa, Gels, 8, 752 (2022); https://doi.org/10.3390/gels8110752
W.A.K. Mahmood, M.M.R. Khan and T.C. Yee, J. Phys. Sci., 25, 123 (2014).
N.N. Mobarak, N. Ramli, A. Ahmad and M.Y.A. Rahman, Solid State Ion., 224, 51 (2012); https://doi.org/10.1016/j.ssi.2012.07.010
C.P. Rhodes, Ph.D. Thesis, Crysalline and Amorphous Phases in Polymer Electrolytes and Model Systems, University of Oklahoma, USA (2001).
M. Marzantowicz, J.R. Dygas, F. Krok, Z. Florjañczyk and E. Zygadlo-Monikowska, J. Non-crystalline Solids, 352, 5216 (2006); https://doi.org/10.1016/j.jnoncrysol.2006.02.161
Z. Xue, D. He and X. Xie, J. Mater. Chem. A Mater. Energy Sustain., 3, 19218 (2015); https://doi.org/10.1039/C5TA03471J
A. Arya and A.L. Sharma, J. Mater. Sci. Mater. Electron., 29, 17903 (2018); https://doi.org/10.1007/s10854-018-9905-3
H.T. Ahmed and O. Gh, Polymers, 11, 853 (2019); https://doi.org/10.3390/polym11050853
S.N.A.M. Johari, N.A. Tajuddin, H. Hanibah and S.K. Deraman, Int. J. Electrochem. Sci., 16, 211049 (2021); https://doi.org/10.20964/2021.10.53
W.R. Blakemore and A.R. Harpell, Carrageenan, In: Food Stabilisers, Thickeners and Gelling Agents, Blackwell Publishing Ltd., pp. 73–94 (2019).
M.A.M. Tajudin, H. Hanibah and D. Darji, Asian J. Chem., 35, 3111 (2023); https://doi.org/10.14233/ajchem.2023.30627
H. Hanibah, A. Ahmad and N.H. Hassan, AIP Conf. Proc., 1614, 295 (2014); https://doi.org/10.1063/1.4895211
N.T.M. Balakrishnan, A. Das, J.D. Joyner, M.J.J. Fatima, L.R. Raphael, A. Pullanchiyodan and P. Raghavan, Mater. Today Chem., 29, 101407 (2023); https://doi.org/10.1016/j.mtchem.2023.101407
H. Hanibah, Ph.D. Thesis, Salt-Polymer-Solvent Ternary Electrolyte System: Salt Solubility and Ion Mobility of LiClO4 in Polymer Solution, Universiti Kebangsaan Malaysia (2015).
S. Chen, Y. Chen, X. Mu, P. Wang, L. Miao, S. Tanemura and H. Cai, Sustainable Mater. Technol., 36, e00635 (2023); https://doi.org/10.1016/j.susmat.2023.e00635
W.M. Haynes, CRC Handbook of Chemistry and Physics, Taylor & Francis Ltd., edn 95 (2014).
M.S. Ding, K. Xu, S.S. Zhang, K. Amine, G.L. Henriksen and T.R. Jow, J. Electrochem. Soc., 148, A1196 (2001); https://doi.org/10.1149/1.1403730
S.I. Smedley, The Interpretation of Ionic Conductivity in Liquids, Springer Science & Business Media (2012).
M.S. Zainudin Ithnin, H. Hanibah, S.K. Navaratnam and F.W. Azman, Malaysian J. Chem., 25, 108 (2023); https://doi.org/10.55373/mjchem.v25i4.99
H. Hanibah, N.Z.N. Hashim and I.J. Shamsudin, AIP Conf. Proc., 1877, 050003 (2017); https://doi.org/10.1063/1.4999877
A. Szczêsna-Chrzan, M. Vogler, P. Yan, G.Z. Zukowska, C. Wölke, A. Ostrowska, S. Szymanska, M. Marcinek, M. Winter, I. Cekic-Laskovic, W. Wieczorek and H.S. Stein, J. Mater. Chem. A Mater. Energy Sustain., 11, 13483 (2023); https://doi.org/10.1039/d3ta01217d
M.S. Ding and T.R. Jow, J. Electrochem. Soc., 151, A2007 (2004); https://doi.org/10.1149/1.1809575
J.Y. Tae, L.A. Patel, M.J. Vigil, K.A. Maerzke, A.T. Findikoglu and R.P. Currier, J. Chem. Phys., 151, (2019); https://doi.org/10.1063/1.5128671