Copyright (c) 2024 Randhir Rai, Saurav Saha, Sreeshma Ravi, Ameena Abbas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Solvothermal Synthesis of Cuprous Oxide Microsphere and its Application as Catalyst for Synthesis of β-Hydroxy Triazole
Corresponding Author(s) : Randhir Rai
Asian Journal of Chemistry,
Vol. 36 No. 7 (2024): Vol 36 Issue 7, 2024
Abstract
In this article, the solvothermal synthesis of spherical cuprous oxide microsphere in glycerol-water (1:1) using copper(II) acetate as copper precursor is reported. The synthesized cuprous oxide microparticles was characterized by powder X-ray diffraction (PXRD) and scanning electron microscopic technique (SEM). The material was successfully used as a catalyst for the synthesis of β-hydroxy-1,2,3-triazole in water via a one-pot multicomponent reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ikeda, T. Takata, M. Komoda, M. Hara, J.N. Kondo, K. Domen, A. Tanaka, H. Hosono and H. Kawazoe, Phys. Chem. Chem. Phys., 1, 4485 (1999); https://doi.org/10.1039/a903543e
- R.N. Briskman, Sol. Energy Mater. Sol. Cells, 27, 361 (1992); https://doi.org/10.1016/0927-0248(92)90097-9
- H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao and B. Yu, Adv. Funct. Mater., 17, 2766 (2007); https://doi.org/10.1002/adfm.200601146
- Y. Yamada, K. Yano and S. Fukuzumi, Energy Environ. Sci., 5, 5356 (2012); https://doi.org/10.1039/C1EE02639A
- M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R.S. Varma, Chem. Rev., 116, 3722 (2016); https://doi.org/10.1021/acs.chemrev.5b00482
- A.P. Ingle, N. Duran and M. Rai, Appl. Microbiol. Biotechnol., 98, 1001 (2014); https://doi.org/10.1007/s00253-013-5422-8
- Y. Bai, T. Yang, Q. Gu, G. Cheng and R. Zheng, Powder Technol., 227, 35 (2012); https://doi.org/10.1016/j.powtec.2012.02.008
- C.-H. Kuo and M.H. Huang, J. Phys. Chem. C, 112, 18355 (2008); https://doi.org/10.1021/jp8060027
- N. Wang, H. He and L. Han, Appl. Surf. Sci., 256, 7335 (2010); https://doi.org/10.1016/j.apsusc.2010.05.029
- R. Rai, S.N. Gummadi and D.K. Chand, ACS Omega, 4, 22514 (2019); https://doi.org/10.1021/acsomega.9b03184
- E.M. Souad and D.R. Bouchareb, Environ. Res. Technol., 3, 202 (2020); https://doi.org/10.35208/ert.802170
- X. Chen, K. Cui, Z. Hai, W. Kuang, L. Wang, J. Zhang and X. Tian, Mater. Lett., 297, 129921 (2021); https://doi.org/10.1016/j.matlet.2021.129921
- M. Bagherzadeh, N. Mousavi, M. Amini, S. Gautam, J.P. Singh and K.H. Chae, Chin. Chem. Lett., 28, 1125 (2017); https://doi.org/10.1016/j.cclet.2017.01.022
- M.S. Aguilar and G. Rosas, J. Solid State Chem., 270, 192 (2019); https://doi.org/10.1016/j.jssc.2018.11.019
- V.V. Rostovtsev, K.G. Green, V.V. Fokin and K.B. Sharpless, Angew. Chem. Int. Ed., 14, 2596 (2002); https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
- C.W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 67, 3057 (2002); https://doi.org/10.1021/jo011148j
- D. Dheer, V. Singh and R. Shankar, Bioorg. Chem., 71, 30 (2017); https://doi.org/10.1016/j.bioorg.2017.01.010
- T.F. Borgati, R.B. Alves, R.R. Teixeira, R.P. de Freitas, T.G. Perdigão, S.F. da Silva, A.A. dos Santos and A.J.O. Bastidas, J. Braz. Chem. Soc., 24, 953 (2013); https://doi.org/10.5935/0103-5053.20130121
- R. Anandhan, M.B. Reddy and M. Sasikumar, New J. Chem., 43, 15052 (2019); https://doi.org/10.1039/C9NJ03217G
- T. Kantaria, T. Kantaria, G. Titvinidze, G. Otinashvili, N. Kupatadze, N. Zavradashvili, D. Tugushi and R. Katsarava, Int. J. Polym. Sci., 2018, 6798258 (2018); https://doi.org/10.1155/2018/6798258
- G. Kumaraswamy, K. Ankamma and A. Pitchaiah, J. Org. Chem., 72, 9822 (2007); https://doi.org/10.1021/jo701724f
- H. Naeimi and V. Nejadshafiee, New J. Chem., 38, 5429 (2014); https://doi.org/10.1039/C4NJ00909F
- B.S.P.A. Kumar, K.H.V. Reddy, G. Satish, R.U. Kumar and Y.V.D. Nageswar, RSC Adv., 4, 60652 (2014); https://doi.org/10.1039/C4RA12061B
- H. EsmaeiliShahri, H. Eshghi, J. Lari and S.A. Rounaghi, Appl. Organomet. Chem., 32, e3947 (2018); https://doi.org/10.1002/aoc.3947
- Q. Qin, G.-H. Xu, Y.-Y. Liu and J.-F. Ma, Appl. Organomet. Chem., 35, e6146 (2021); https://doi.org/10.1002/aoc.6146
- R. Rai and D.K. Chand, J. Chem. Sci., 132, 83 (2020); https://doi.org/10.1007/s12039-020-01774-5
References
S. Ikeda, T. Takata, M. Komoda, M. Hara, J.N. Kondo, K. Domen, A. Tanaka, H. Hosono and H. Kawazoe, Phys. Chem. Chem. Phys., 1, 4485 (1999); https://doi.org/10.1039/a903543e
R.N. Briskman, Sol. Energy Mater. Sol. Cells, 27, 361 (1992); https://doi.org/10.1016/0927-0248(92)90097-9
H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao and B. Yu, Adv. Funct. Mater., 17, 2766 (2007); https://doi.org/10.1002/adfm.200601146
Y. Yamada, K. Yano and S. Fukuzumi, Energy Environ. Sci., 5, 5356 (2012); https://doi.org/10.1039/C1EE02639A
M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R.S. Varma, Chem. Rev., 116, 3722 (2016); https://doi.org/10.1021/acs.chemrev.5b00482
A.P. Ingle, N. Duran and M. Rai, Appl. Microbiol. Biotechnol., 98, 1001 (2014); https://doi.org/10.1007/s00253-013-5422-8
Y. Bai, T. Yang, Q. Gu, G. Cheng and R. Zheng, Powder Technol., 227, 35 (2012); https://doi.org/10.1016/j.powtec.2012.02.008
C.-H. Kuo and M.H. Huang, J. Phys. Chem. C, 112, 18355 (2008); https://doi.org/10.1021/jp8060027
N. Wang, H. He and L. Han, Appl. Surf. Sci., 256, 7335 (2010); https://doi.org/10.1016/j.apsusc.2010.05.029
R. Rai, S.N. Gummadi and D.K. Chand, ACS Omega, 4, 22514 (2019); https://doi.org/10.1021/acsomega.9b03184
E.M. Souad and D.R. Bouchareb, Environ. Res. Technol., 3, 202 (2020); https://doi.org/10.35208/ert.802170
X. Chen, K. Cui, Z. Hai, W. Kuang, L. Wang, J. Zhang and X. Tian, Mater. Lett., 297, 129921 (2021); https://doi.org/10.1016/j.matlet.2021.129921
M. Bagherzadeh, N. Mousavi, M. Amini, S. Gautam, J.P. Singh and K.H. Chae, Chin. Chem. Lett., 28, 1125 (2017); https://doi.org/10.1016/j.cclet.2017.01.022
M.S. Aguilar and G. Rosas, J. Solid State Chem., 270, 192 (2019); https://doi.org/10.1016/j.jssc.2018.11.019
V.V. Rostovtsev, K.G. Green, V.V. Fokin and K.B. Sharpless, Angew. Chem. Int. Ed., 14, 2596 (2002); https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
C.W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 67, 3057 (2002); https://doi.org/10.1021/jo011148j
D. Dheer, V. Singh and R. Shankar, Bioorg. Chem., 71, 30 (2017); https://doi.org/10.1016/j.bioorg.2017.01.010
T.F. Borgati, R.B. Alves, R.R. Teixeira, R.P. de Freitas, T.G. Perdigão, S.F. da Silva, A.A. dos Santos and A.J.O. Bastidas, J. Braz. Chem. Soc., 24, 953 (2013); https://doi.org/10.5935/0103-5053.20130121
R. Anandhan, M.B. Reddy and M. Sasikumar, New J. Chem., 43, 15052 (2019); https://doi.org/10.1039/C9NJ03217G
T. Kantaria, T. Kantaria, G. Titvinidze, G. Otinashvili, N. Kupatadze, N. Zavradashvili, D. Tugushi and R. Katsarava, Int. J. Polym. Sci., 2018, 6798258 (2018); https://doi.org/10.1155/2018/6798258
G. Kumaraswamy, K. Ankamma and A. Pitchaiah, J. Org. Chem., 72, 9822 (2007); https://doi.org/10.1021/jo701724f
H. Naeimi and V. Nejadshafiee, New J. Chem., 38, 5429 (2014); https://doi.org/10.1039/C4NJ00909F
B.S.P.A. Kumar, K.H.V. Reddy, G. Satish, R.U. Kumar and Y.V.D. Nageswar, RSC Adv., 4, 60652 (2014); https://doi.org/10.1039/C4RA12061B
H. EsmaeiliShahri, H. Eshghi, J. Lari and S.A. Rounaghi, Appl. Organomet. Chem., 32, e3947 (2018); https://doi.org/10.1002/aoc.3947
Q. Qin, G.-H. Xu, Y.-Y. Liu and J.-F. Ma, Appl. Organomet. Chem., 35, e6146 (2021); https://doi.org/10.1002/aoc.6146
R. Rai and D.K. Chand, J. Chem. Sci., 132, 83 (2020); https://doi.org/10.1007/s12039-020-01774-5