Copyright (c) 2024 Baramee Phungpis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Benzoin Condensation using N,N-Dimethylbenzimidazolium Iodide as an Efficient Greener Catalyst in Neutral Ionic Liquid [Bmim]BF4
Corresponding Author(s) : Baramee Phungpis
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
The utilization of N,N-dimethylbenzimidazolium iodide as a catalyst in [Bmim]BF4 for benzoin condensation under microwave irradiation demonstrates its efficiency and eco-friendliness. This method enables the synthesis of α-hydroxy carbonyl compounds from various aromatic and heteroaromatic aldehydes with significant yields, ranging from good to high (89-96%). The reactions proceed swiftly, yielding no detectable byproducts. Moreover, the recycled reaction media, comprising benzimidazolium salt and NaOH after extraction, can be reused multiple times without a significant loss of efficiency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Virkutyte and R.S. Varma, Chem. Sci., 2, 837 (2011); https://doi.org/10.1039/C0SC00338G
- M.N. Nadagouda, T.F. Speth and R.S. Varma, Acc. Chem. Res., 44, 469 (2011); https://doi.org/10.1021/ar1001457
- J. Kou and R.S. Varma, ChemSusChem, 5, 2435 (2012); https://doi.org/10.1002/cssc.201200477
- B. Baruwati and R.S. Varma, ChemSusChem, 2, 1041 (2009); https://doi.org/10.1002/cssc.200900220
- B. Baruwati, V. Polshettiwar and R.S. Varma, Green Chem., 11, 926 (2009); https://doi.org/10.1039/b902184a
- P. Schexnailder and G. Schmidt, Colloid Polym. Sci., 287, 1 (2009); https://doi.org/10.1007/s00396-008-1949-0
- V. Polshettiwar, M.N. Nadagouda and R.S. Varma, Aust. J. Chem., 62, 16 (2009); https://doi.org/10.1071/CH08404
- S. Connon, K. Zeitler, C. Rose and S. Gundala, Synthesis, 190 (2010); https://doi.org/10.1055/s-0030-1258363
- L.C. Lee, J.Y. Park, S.Y. Yoon, Y.H. Bae and S.J. Lee, Tetrahedron Lett., 45, 191 (2004); https://doi.org/10.1016/j.tetlet.2003.10.133
- R.E. Lutz and R.S. Murphey, J. Am. Chem. Soc., 71, 478 (1949); https://doi.org/10.1021/ja01170a030
- N.A. Meanwell, M.J. Rosenfeld, A.K. Trehan, J.L. Romine, J.J.K. Wright, C.L. Brassard, J.O. Buchanan, M.E. Federici, J.S. Fleming, M. Gamberdella, G. Zavoico and S.M. Seiler, J. Med. Chem., 35, 3498 (1992); https://doi.org/10.1021/jm00097a007
- P.A. Procopiou, C.D. Draper, J.L. Hutson, G.G. Inglis, B.C. Ross and N.S. Watson, J. Med. Chem., 36, 3658 (1993); https://doi.org/10.1021/jm00075a021
- V. Hahnvajanawong, W. Waengdongbung, S. Piekkaew, B. Phungpis and P. Theramongkol, Sci. Asia, 39, 50 (2013); https://doi.org/10.2306/scienceasia1513-1874.2013.39.050
- B. Phungpis, V. Hahnvajanawong and P. Theramongkol, Orient. J. Chem., 30, 933 (2014); https://doi.org/10.13005/ojc/300303
- B. Phungpis and K. Worawut, ASEAN J. Sci. Technol. Dev, 25, 1 (2022); https://doi.org/10.55164/ajstr.v25i1.245292
- V. Hahnvajanawong, W. Waengdongbung and P. Theramongkol, Orient. J. Chem., 32, 127 (2016); https://doi.org/10.13005/ojc/320113
- C.J. Pouchert, The Aldrich Library of NMR Spectra, Aldrich Chemical Co. (1983).
- A.S. Demir, Ö. Sesenoglu, E. Eren, B. Hosrik, M. Pohl, E. Janzen, D. Kolter, R. Feldmann, P. Dünkelmann and M. Müller, Adv. Synth. Catal., 344, 96 (2002); https://doi.org/10.1002/1615-4169(200201)344:1<96::AID-ADSC96>3.0.CO;2-Z
- E.J. Corey and F.Y. Zhang, Org. Lett., 1, 1287 (1999); https://doi.org/10.1021/ol990964z
- X. Ren and H. Du, J. Am. Chem. Soc., 138, 810 (2016); https://doi.org/10.1021/jacs.5b13104
- Z.Q. Rong, H.J. Pan, H.L. Yan and Y. Zhao, Org. Lett., 16, 208 (2014); https://doi.org/10.1021/ol4032045
- R. Breslow, J. Am. Chem. Soc., 80, 3719 (1958); https://doi.org/10.1021/ja01547a064
- J. Yan, R. Sun, K. Shi, K. Li, L. Yang and G. Zhong, J. Org. Chem., 83, 7547 (2018); https://doi.org/10.1021/acs.joc.8b00481
- Y. Liu, H. Wang, Y. Fu, Y. Qi and K. Yang, Synth. Commun., 44, 259 (2014); https://doi.org/10.1080/00397911.2013.804572
- T. Hischer, D. Gocke, M. Fernández, A.R. Alcántara, J. Sinisterra, P. Hoyos, W. Hartmeier and M.B. Ansorge-Schumacher, Tetrahedron, 61, 7378 (2005); https://doi.org/10.1016/j.tet.2005.05.082
- J. Buckingham, Dictionary of Organic Compounds, Chapman and Hall (1982).
- B. Phungpis and V. Hahnvajanawong, Asian J. Chem., 32, 2028 (2020); https://doi.org/10.14233/ajchem.2020.22711
- A. Miyashita, H. Matsuda, C. Iijima and T. Higashino, Chem. Pharm. Bull. (Tokyo), 38, 1147 (1990); https://doi.org/10.1248/cpb.38.1147
References
J. Virkutyte and R.S. Varma, Chem. Sci., 2, 837 (2011); https://doi.org/10.1039/C0SC00338G
M.N. Nadagouda, T.F. Speth and R.S. Varma, Acc. Chem. Res., 44, 469 (2011); https://doi.org/10.1021/ar1001457
J. Kou and R.S. Varma, ChemSusChem, 5, 2435 (2012); https://doi.org/10.1002/cssc.201200477
B. Baruwati and R.S. Varma, ChemSusChem, 2, 1041 (2009); https://doi.org/10.1002/cssc.200900220
B. Baruwati, V. Polshettiwar and R.S. Varma, Green Chem., 11, 926 (2009); https://doi.org/10.1039/b902184a
P. Schexnailder and G. Schmidt, Colloid Polym. Sci., 287, 1 (2009); https://doi.org/10.1007/s00396-008-1949-0
V. Polshettiwar, M.N. Nadagouda and R.S. Varma, Aust. J. Chem., 62, 16 (2009); https://doi.org/10.1071/CH08404
S. Connon, K. Zeitler, C. Rose and S. Gundala, Synthesis, 190 (2010); https://doi.org/10.1055/s-0030-1258363
L.C. Lee, J.Y. Park, S.Y. Yoon, Y.H. Bae and S.J. Lee, Tetrahedron Lett., 45, 191 (2004); https://doi.org/10.1016/j.tetlet.2003.10.133
R.E. Lutz and R.S. Murphey, J. Am. Chem. Soc., 71, 478 (1949); https://doi.org/10.1021/ja01170a030
N.A. Meanwell, M.J. Rosenfeld, A.K. Trehan, J.L. Romine, J.J.K. Wright, C.L. Brassard, J.O. Buchanan, M.E. Federici, J.S. Fleming, M. Gamberdella, G. Zavoico and S.M. Seiler, J. Med. Chem., 35, 3498 (1992); https://doi.org/10.1021/jm00097a007
P.A. Procopiou, C.D. Draper, J.L. Hutson, G.G. Inglis, B.C. Ross and N.S. Watson, J. Med. Chem., 36, 3658 (1993); https://doi.org/10.1021/jm00075a021
V. Hahnvajanawong, W. Waengdongbung, S. Piekkaew, B. Phungpis and P. Theramongkol, Sci. Asia, 39, 50 (2013); https://doi.org/10.2306/scienceasia1513-1874.2013.39.050
B. Phungpis, V. Hahnvajanawong and P. Theramongkol, Orient. J. Chem., 30, 933 (2014); https://doi.org/10.13005/ojc/300303
B. Phungpis and K. Worawut, ASEAN J. Sci. Technol. Dev, 25, 1 (2022); https://doi.org/10.55164/ajstr.v25i1.245292
V. Hahnvajanawong, W. Waengdongbung and P. Theramongkol, Orient. J. Chem., 32, 127 (2016); https://doi.org/10.13005/ojc/320113
C.J. Pouchert, The Aldrich Library of NMR Spectra, Aldrich Chemical Co. (1983).
A.S. Demir, Ö. Sesenoglu, E. Eren, B. Hosrik, M. Pohl, E. Janzen, D. Kolter, R. Feldmann, P. Dünkelmann and M. Müller, Adv. Synth. Catal., 344, 96 (2002); https://doi.org/10.1002/1615-4169(200201)344:1<96::AID-ADSC96>3.0.CO;2-Z
E.J. Corey and F.Y. Zhang, Org. Lett., 1, 1287 (1999); https://doi.org/10.1021/ol990964z
X. Ren and H. Du, J. Am. Chem. Soc., 138, 810 (2016); https://doi.org/10.1021/jacs.5b13104
Z.Q. Rong, H.J. Pan, H.L. Yan and Y. Zhao, Org. Lett., 16, 208 (2014); https://doi.org/10.1021/ol4032045
R. Breslow, J. Am. Chem. Soc., 80, 3719 (1958); https://doi.org/10.1021/ja01547a064
J. Yan, R. Sun, K. Shi, K. Li, L. Yang and G. Zhong, J. Org. Chem., 83, 7547 (2018); https://doi.org/10.1021/acs.joc.8b00481
Y. Liu, H. Wang, Y. Fu, Y. Qi and K. Yang, Synth. Commun., 44, 259 (2014); https://doi.org/10.1080/00397911.2013.804572
T. Hischer, D. Gocke, M. Fernández, A.R. Alcántara, J. Sinisterra, P. Hoyos, W. Hartmeier and M.B. Ansorge-Schumacher, Tetrahedron, 61, 7378 (2005); https://doi.org/10.1016/j.tet.2005.05.082
J. Buckingham, Dictionary of Organic Compounds, Chapman and Hall (1982).
B. Phungpis and V. Hahnvajanawong, Asian J. Chem., 32, 2028 (2020); https://doi.org/10.14233/ajchem.2020.22711
A. Miyashita, H. Matsuda, C. Iijima and T. Higashino, Chem. Pharm. Bull. (Tokyo), 38, 1147 (1990); https://doi.org/10.1248/cpb.38.1147