Copyright (c) 2024 Samriddh Srivastava, Garima Mathur
This work is licensed under a Creative Commons Attribution 4.0 International License.
Production and Characterization of Bacterial Cellulose Synthesized by Komagataeibacter sp. Isolated from Rotten Coconut Pulp
Corresponding Author(s) : Garima Mathur
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
Bacterial cellulose is a naturally occurring polysaccharide that is produced by acetic acid bacteria. It has become increasingly popular due to its numerous biotechnological applications. Bacterial cellulose is free from contaminants that are often associated with plant cellulose. This study aims at isolation of bacterial cellulose producing microbial strains from rotten fruits. The selected bacterial cellulose producer was identified using biochemical tests, including biochemical, carbohydrate fermentation, morphology, gram staining and 16S rRNA sequence analysis. Furthermore, several different media were evaluated for higher production of cellulose. The produced cellulose sheets were washed, purified and characterized using various analytical techniques, including FTIR, XRD and SEM analysis. A potential high bacterial cellulose yielding microbial strain was isolated from coconut pulp waste and identified as Komagataeibacter saccharivorans strain BC-C1 using 16S rRNA sequencing. Effect of media components on bacterial cellulose production was studied. The isolate yielded 0.52 g/100 mL with Hestrin-Schramm (HS) culture media (designated as M1) and 1.10 g/100 mL in M5 media. The physico-chemical characterization demonstrated that produced bacterial cellulose sheets show characteristics IR bands and three-dimensional fibrillar interconnected network structure. The study revealed that isolated Komagataeibacter saccharivorans strain BC-C1 can be utilized for large scale production of bacterial cellulose.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Buldum and A. Mantalaris, Int. J. Mol. Sci., 22, 7192 (2021); https://doi.org/10.3390/ijms22137192
- S.P. Nunes, P.Z. Culfaz-Emecen, G.Z. Ramon, T. Visser, G.H. Koops, W. Jin and M. Ulbricht, J. Membr. Sci., 598, 117761 (2020); https://doi.org/10.1016/j.memsci.2019.117761
- Z. Wu, S. Chen, J. Li, B. Wang, M. Jin, Q. Liang, D. Zhang, Z. Han, L. Deng, X. Qu and H. Wang, Adv. Funct Mater., 33, 2214327 (2023); https://doi.org/10.1002/adfm.202214327
- P. Sintharm, A. Nimpaiboon, Y.C. Liao and M. Phisalaphong, Cellulose, 29, 1739 (2022); https://doi.org/10.1007/s10570-021-04366-9
- S. Gorgieva and J. Trèek, Nanomaterials, 9, 1352 (2019); https://doi.org/10.3390/nano9101352
- G. Takayama and T. Kondo, Carbohydr. Polym., 321, 121311 (2023); https://doi.org/10.1016/j.carbpol.2023.121311
- L. Urbina, M.Á. Corcuera, N. Gabilondo, A. Eceiza and A. Retegi, Cellulose, 28, 8229 (2021); https://doi.org/10.1007/s10570-021-04020-4
- N. Pogorelova, E. Rogachev, I. Digel, S. Chernigova and D. Nardin, Materials, 13, 2849 (2020); https://doi.org/10.3390/ma13122849
- S. Swingler, A. Gupta, H. Gibson, M. Kowalczuk, W. Heaselgrave and I. Radecka, Polymers, 13, 412 (2021); https://doi.org/10.3390/polym13030412
- M.A. Dutt, M.A. Hanif, F. Nadeem and H.N. Bhatti, J. Environ. Chem. Eng., 8, 104073 (2020); https://doi.org/10.1016/j.jece.2020.104073
- C. Campano, A. Balea, A. Blanco and C. Negro, Cellulose, 23, 57 (2016); https://doi.org/10.1007/s10570-015-0802-0
- A. Adnan, G. Nair, M. Lay and J. Swan, Trends Sci., 18, 453 (2021); https://doi.org/10.48048/tis.2021.453
- R.R. Singhania, A.K. Patel, M.L. Tsai, C.W. Chen and C.D. Dong, Bioengineered, 12, 6793 (2021); https://doi.org/10.1080/21655979.2021.1968989
- T. Kamal, M. Ul-Islam, A. Fatima, M.W. Ullah and S. Manan, Gels, 8, 552 (2022); https://doi.org/10.3390/gels8090552
- M.R. Kosseva, S. Zhong, M. Li, J. Zhang and N.A. Tjutju, Biopolymers Produced from Food Wastes: A Case Study on Biosynthesis of Bacterial Cellulose from Fruit Juices, In: Food Industry Wastes, Academic Press, pp. 225-254 (2020).
- M. Velásquez-Riaño and V. Bojacá, Cellulose, 24, 2677 (2017); https://doi.org/10.1007/s10570-017-1309-7
- B.E. Rangaswamy, K.P. Vanitha and B.S. Hungund, Int. J. Polym. Sci., 2015, 280784 (2015); https://doi.org/10.1155/2015/280784
- G. Gopu and S. Govindan, Prep. Biochem. Biotechnol., 48, 842 (2018); https://doi.org/10.1080/10826068.2018.1513032
- G.M. Garrity, Bergey’s Manual of Systematic Bacteriology, Springer: New York, edn. 2, pp. 41-43 (2002).
- F. Mohammadkazemi, M. Azin and A. Ashori, Carbohydr. Polym., 117, 518 (2015); https://doi.org/10.1016/j.carbpol.2014.10.008
- M.S. Dayal, N. Goswami, A. Sahai, V. Jain, G. Mathur and A. Mathur, Carbohydr. Polym., 94, 12 (2013); https://doi.org/10.1016/j.carbpol.2013.01.018
- P.J.M.P. Scherrer, J. Math. Phys., 2, 98 (1918).
- C. Molina-Ramírez, C. Castro, R. Zuluaga and P. Ganan, J. Polym. Environ., 26, 830 (2018); https://doi.org/10.1007/s10924-017-0993-6
- R. Srinivasan, U. Karaoz, M. Volegova, J. MacKichan, M. Kato-Maeda, S. Miller, R. Nadarajan, E.L. Brodie and S.V. Lynch, PLoS One, 10, e0117617 (2015); https://doi.org/10.1371/journal.pone.0117617
- S. La China, G. Zanichelli, L. De Vero and M. Gullo, Biotechnol. Lett., 40, 1289 (2018); https://doi.org/10.1007/s10529-018-2591-7
- D. Ciolacu, F. Ciolacu and V.I. Popa, Cellul. Chem. Technol., 45, 13 (2011).
- M. Ul-Islam, M.W. Ullah, S. Khan and J.K. Park, Korean J. Chem. Eng., 37, 925 (2020); https://doi.org/10.1007/s11814-020-0524-3
- S. Gorgieva, U. Jancic, E. Cepec and J. Trcek, Int. J. Biol. Macromol., 244, 125368 (2023); https://doi.org/10.1016/j.ijbiomac.2023.125368
- S.-S. Wang, Y.-H. Han, J.-L. Chen, D.-C. Zhang, X.-X. Shi, Y.-X. Ye, D.-L. Chen and M. Li, Polymers, 10, 963 (2018); https://doi.org/10.3390/polym10090963
- M.E. Fuller, C. Andaya and K. McClay, J. Microbiol. Methods, 144, 145 (2018); https://doi.org/10.1016/j.mimet.2017.10.017
- M.O. Akintunde, B.C. Adebayo-Tayo, M.M. Ishola, A. Zamani and I.S. Horváth, Bioengineered, 13, 10010 (2022); https://doi.org/10.1080/21655979.2022.2062970
- G. Paladini, V. Venuti, V. Crupi, D. Majolino, A. Fiorati and C. Punta, Polymers, 13, 528 (2021); https://doi.org/10.3390/polym13040528
- C. Fosse, A. Esposito, P. Lemechko, Y.S. Salim, V. Causin, V. Gaucher, S. Bruzaud, K. Sudesh, L. Delbreilh and E. Dargent, J. Polym. Environ., 31, 4430 (2023); https://doi.org/10.1007/s10924-023-02882-2
- L. Chen, F. Hong, X.X. Yang and S.F. Han, Bioresour. Technol., 135, 464 (2013); https://doi.org/10.1016/j.biortech.2012.10.029
- H. Seddiqi, E. Oliaei, H. Honarkar, J. Jin, L.C. Geonzon, R.G. Bacabac and J. Klein-Nulend, Cellulose, 28, 1893 (2021); https://doi.org/10.1007/s10570-020-03674-w
- J. Kang, X. Yang, Q. Hu, Z. Cai, L.M. Liu and L. Guo, Chem. Rev., 123, 8859 (2023); https://doi.org/10.1021/acs.chemrev.3c00229
- Z. Peter, Carbohydr. Polym., 254, 117417 (2021); https://doi.org/10.1016/j.carbpol.2020.117417
- M.T. Shaaban, M. Zayed and H.S. Salama, Curr. Microbiol., 80, 75 (2023); https://doi.org/10.1007/s00284-023-03182-7
- N.F. Vasconcelos, J.P.A. Feitosa, F.M.P. da Gama, J.P.S. Morais, F.K. Andrade, M.S.M. de Souza Filho and M.F. Rosa, Carbohydr. Polym., 155, 425 (2017); https://doi.org/10.1016/j.carbpol.2016.08.090
References
G. Buldum and A. Mantalaris, Int. J. Mol. Sci., 22, 7192 (2021); https://doi.org/10.3390/ijms22137192
S.P. Nunes, P.Z. Culfaz-Emecen, G.Z. Ramon, T. Visser, G.H. Koops, W. Jin and M. Ulbricht, J. Membr. Sci., 598, 117761 (2020); https://doi.org/10.1016/j.memsci.2019.117761
Z. Wu, S. Chen, J. Li, B. Wang, M. Jin, Q. Liang, D. Zhang, Z. Han, L. Deng, X. Qu and H. Wang, Adv. Funct Mater., 33, 2214327 (2023); https://doi.org/10.1002/adfm.202214327
P. Sintharm, A. Nimpaiboon, Y.C. Liao and M. Phisalaphong, Cellulose, 29, 1739 (2022); https://doi.org/10.1007/s10570-021-04366-9
S. Gorgieva and J. Trèek, Nanomaterials, 9, 1352 (2019); https://doi.org/10.3390/nano9101352
G. Takayama and T. Kondo, Carbohydr. Polym., 321, 121311 (2023); https://doi.org/10.1016/j.carbpol.2023.121311
L. Urbina, M.Á. Corcuera, N. Gabilondo, A. Eceiza and A. Retegi, Cellulose, 28, 8229 (2021); https://doi.org/10.1007/s10570-021-04020-4
N. Pogorelova, E. Rogachev, I. Digel, S. Chernigova and D. Nardin, Materials, 13, 2849 (2020); https://doi.org/10.3390/ma13122849
S. Swingler, A. Gupta, H. Gibson, M. Kowalczuk, W. Heaselgrave and I. Radecka, Polymers, 13, 412 (2021); https://doi.org/10.3390/polym13030412
M.A. Dutt, M.A. Hanif, F. Nadeem and H.N. Bhatti, J. Environ. Chem. Eng., 8, 104073 (2020); https://doi.org/10.1016/j.jece.2020.104073
C. Campano, A. Balea, A. Blanco and C. Negro, Cellulose, 23, 57 (2016); https://doi.org/10.1007/s10570-015-0802-0
A. Adnan, G. Nair, M. Lay and J. Swan, Trends Sci., 18, 453 (2021); https://doi.org/10.48048/tis.2021.453
R.R. Singhania, A.K. Patel, M.L. Tsai, C.W. Chen and C.D. Dong, Bioengineered, 12, 6793 (2021); https://doi.org/10.1080/21655979.2021.1968989
T. Kamal, M. Ul-Islam, A. Fatima, M.W. Ullah and S. Manan, Gels, 8, 552 (2022); https://doi.org/10.3390/gels8090552
M.R. Kosseva, S. Zhong, M. Li, J. Zhang and N.A. Tjutju, Biopolymers Produced from Food Wastes: A Case Study on Biosynthesis of Bacterial Cellulose from Fruit Juices, In: Food Industry Wastes, Academic Press, pp. 225-254 (2020).
M. Velásquez-Riaño and V. Bojacá, Cellulose, 24, 2677 (2017); https://doi.org/10.1007/s10570-017-1309-7
B.E. Rangaswamy, K.P. Vanitha and B.S. Hungund, Int. J. Polym. Sci., 2015, 280784 (2015); https://doi.org/10.1155/2015/280784
G. Gopu and S. Govindan, Prep. Biochem. Biotechnol., 48, 842 (2018); https://doi.org/10.1080/10826068.2018.1513032
G.M. Garrity, Bergey’s Manual of Systematic Bacteriology, Springer: New York, edn. 2, pp. 41-43 (2002).
F. Mohammadkazemi, M. Azin and A. Ashori, Carbohydr. Polym., 117, 518 (2015); https://doi.org/10.1016/j.carbpol.2014.10.008
M.S. Dayal, N. Goswami, A. Sahai, V. Jain, G. Mathur and A. Mathur, Carbohydr. Polym., 94, 12 (2013); https://doi.org/10.1016/j.carbpol.2013.01.018
P.J.M.P. Scherrer, J. Math. Phys., 2, 98 (1918).
C. Molina-Ramírez, C. Castro, R. Zuluaga and P. Ganan, J. Polym. Environ., 26, 830 (2018); https://doi.org/10.1007/s10924-017-0993-6
R. Srinivasan, U. Karaoz, M. Volegova, J. MacKichan, M. Kato-Maeda, S. Miller, R. Nadarajan, E.L. Brodie and S.V. Lynch, PLoS One, 10, e0117617 (2015); https://doi.org/10.1371/journal.pone.0117617
S. La China, G. Zanichelli, L. De Vero and M. Gullo, Biotechnol. Lett., 40, 1289 (2018); https://doi.org/10.1007/s10529-018-2591-7
D. Ciolacu, F. Ciolacu and V.I. Popa, Cellul. Chem. Technol., 45, 13 (2011).
M. Ul-Islam, M.W. Ullah, S. Khan and J.K. Park, Korean J. Chem. Eng., 37, 925 (2020); https://doi.org/10.1007/s11814-020-0524-3
S. Gorgieva, U. Jancic, E. Cepec and J. Trcek, Int. J. Biol. Macromol., 244, 125368 (2023); https://doi.org/10.1016/j.ijbiomac.2023.125368
S.-S. Wang, Y.-H. Han, J.-L. Chen, D.-C. Zhang, X.-X. Shi, Y.-X. Ye, D.-L. Chen and M. Li, Polymers, 10, 963 (2018); https://doi.org/10.3390/polym10090963
M.E. Fuller, C. Andaya and K. McClay, J. Microbiol. Methods, 144, 145 (2018); https://doi.org/10.1016/j.mimet.2017.10.017
M.O. Akintunde, B.C. Adebayo-Tayo, M.M. Ishola, A. Zamani and I.S. Horváth, Bioengineered, 13, 10010 (2022); https://doi.org/10.1080/21655979.2022.2062970
G. Paladini, V. Venuti, V. Crupi, D. Majolino, A. Fiorati and C. Punta, Polymers, 13, 528 (2021); https://doi.org/10.3390/polym13040528
C. Fosse, A. Esposito, P. Lemechko, Y.S. Salim, V. Causin, V. Gaucher, S. Bruzaud, K. Sudesh, L. Delbreilh and E. Dargent, J. Polym. Environ., 31, 4430 (2023); https://doi.org/10.1007/s10924-023-02882-2
L. Chen, F. Hong, X.X. Yang and S.F. Han, Bioresour. Technol., 135, 464 (2013); https://doi.org/10.1016/j.biortech.2012.10.029
H. Seddiqi, E. Oliaei, H. Honarkar, J. Jin, L.C. Geonzon, R.G. Bacabac and J. Klein-Nulend, Cellulose, 28, 1893 (2021); https://doi.org/10.1007/s10570-020-03674-w
J. Kang, X. Yang, Q. Hu, Z. Cai, L.M. Liu and L. Guo, Chem. Rev., 123, 8859 (2023); https://doi.org/10.1021/acs.chemrev.3c00229
Z. Peter, Carbohydr. Polym., 254, 117417 (2021); https://doi.org/10.1016/j.carbpol.2020.117417
M.T. Shaaban, M. Zayed and H.S. Salama, Curr. Microbiol., 80, 75 (2023); https://doi.org/10.1007/s00284-023-03182-7
N.F. Vasconcelos, J.P.A. Feitosa, F.M.P. da Gama, J.P.S. Morais, F.K. Andrade, M.S.M. de Souza Filho and M.F. Rosa, Carbohydr. Polym., 155, 425 (2017); https://doi.org/10.1016/j.carbpol.2016.08.090