Copyright (c) 2024 Dr. Rajesh K M
This work is licensed under a Creative Commons Attribution 4.0 International License.
Combination of Sonochemical Synthesis and Calcination of Graphene-TiO2 Nanocomposite for Efficient Photocatalytic Degradation of Methyl Orange Dye
Corresponding Author(s) : K.M. Rajesh
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
In this work, a nanostructured graphene-TiO2 nanocomposite was prepared by modified sonochemical method followed by calcination process at 400 ºC and characterized by X-ray diffraction, transmission electron microscopy, UV visible spectroscopy, IR spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic activity of the prepared sample was evaluated by photocatalytic degradation of methyl orange dye. On analysis, visible light absorption was found to be increased for the nanocomposite rather than pure TiO2. About 75% degradation efficiency was exhibited by the prepared GT2 composite under sunlight irradiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Bhattacharjee, I. Som, R. Saha and S. Mondal, Int. J. Environ. Anal. Chem., 104, 489 (2022); https://doi.org/10.1080/03067319.2021.2022130
- J. Karpinska and U. Kotowska, Water, 11, 2017 (2019); https://doi.org/10.3390/w11102017
- N. Morin-Crini, E. Lichtfouse, G. Liu, V. Balaram, A.R.L. Ribeiro, Z. Lu, F. Stock, E. Carmona, M.R. Teixeira, L.A. Picos-Corrales, J.C. Moreno-Piraján, L. Giraldo, C. Li, A. Pandey, D. Hocquet, G. Torri and G. Crini, Environ. Chem. Lett., 20, 2311 (2022); https://doi.org/10.1007/s10311-022-01447-4
- M.T.H. Van Vliet, E.R. Jones, M. Florke, W.H.P. Franssen, N. Hanasaki, Y. Wada and J.R. Yearsley, Environ. Res. Lett., 16, 024020 (2021); https://doi.org/10.1088/1748-9326/abbfc3
- R. Li, T. Li and Q. Zhou, Catalysts, 10, 804 (2020); https://doi.org/10.3390/catal10070804
- M.M. Mahlambi, C.J. Ngila and B.B. Mamba, J. Nanomater., 2015, 790173 (2015); https://doi.org/10.1155/2015/790173
- X. Kang, S. Liu, Z. Dai, Y. He, X. Song and Z. Tan, Catalysts, 9, 191 (2019); https://doi.org/10.3390/catal9020191
- F. Tanos, A. Razzouk, G. Lesage, M. Cretin and M. Bechelany, ChemSusChem, 17, e202301139 (2024); https://doi.org/10.1002/cssc.202301139
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- G. Eda, G. Fanchini and M. Chhowalla, Nat. Nanotechnol., 3, 270 (2008); https://doi.org/10.1038/nnano.2008.83
- J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang and L. Jiang, ACS Nano, 5, 590 (2011); https://doi.org/10.1021/nn102767d
- Z. Wang, M. Zhang, Z. Song, M. Yaseen, Z. Huang, A. Wang, Z. Guisheng and S. Shao, J. Colloid Interface Sci., 624, 88 (2022); https://doi.org/10.1016/j.jcis.2022.05.094
- S. Linley, Y.Y. Liu, C.J. Ptacek, D.W. Blowes and F.X. Gu, ACS Appl. Mater. Interfaces, 6, 4658 (2014); https://doi.org/10.1021/am4039272
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
- B.Y.S. Chang, N.M. Huang, M.N. An’amt, A.R. Marlinda, Y. Norazriena, M.R. Muhamad, I. Harrison, H.N. Lim, C.H. Chia, Int. J. Nanomed., 7, 3379 (2012); https://doi.org/10.2147/IJN.S28189
- S. Khanna, P. Marathey, S. Paneliya, P. Vinchhi, R. Chaudhari and J. Vora, Int. J. Hydrogen Energy, 47, 41698 (2022); https://doi.org/10.1016/j.ijhydene.2022.02.050
- P. Muthirulan, C.N. Devi and M.M. Sundaram, Mater. Sci. Semicond., 25, 219 (2014); https://doi.org/10.1016/j.mssp.2013.11.036
- D.N. Tafen, J. Wang, N.Q. Wu and J.P. Lewis, Appl. Phys. Lett., 94, 093101 (2009); https://doi.org/10.1063/1.3093820
- J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, J. Am. Chem. Soc., 131, 12290 (2009); https://doi.org/10.1021/ja903781h
- J.M. Herrmann, Catal. Today, 53, 115 (1999); https://doi.org/10.1016/S0920-5861(99)00107-8
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001); https://doi.org/10.1126/science.1061051
- V. Stengl, S. Bakardjieva and N. Murafa, Mater. Chem. Phys., 114, 217 (2009); https://doi.org/10.1016/j.matchemphys.2008.09.025
- N.R. Khalid, E. Ahmed, Z. Hong, L. Sana and M. Ahmed, Curr. Appl. Phys., 13, 659 (2013); https://doi.org/10.1016/j.cap.2012.11.003
- R. Nawaz, C.F. Kait, H.Y. Chia, M.H. Isa and L.W. Huei, Environ. Technol. Innov., 19, 101007 (2020); https://doi.org/10.1016/j.eti.2020.101007
- J.P. Jeon, D.H. Kweon, B.J. Jang, M.J. Ju and J.B. Baek, Adv. Sustain. Syst., 4, 2000197 (2020); https://doi.org/10.1002/adsu.202000197
- L. Li, L. Yu, Z. Lin and G. Yang, ACS Appl. Mater. Interfaces, 8, 8536 (2016); https://doi.org/10.1021/acsami.6b00966
- Y. Wang, L. Li, H. Lu, C. Wang, Y. Zhao, S. Kuga, Y. Huang and M. Wu, J. Phys. Chem. Solids, 162, 110448 (2022); https://doi.org/10.1016/j.jpcs.2021.110448
- N. Ahmed, A.A. Farghali, W.M.A. El Rouby and N.K. Allam, Int. J. Hydrogen Energy, 42, 29131 (2017); https://doi.org/10.1016/j.ijhydene.2017.10.014
- F. Li, Y. Huang, H. Peng, Y. Cao and Y. Niu, Int. J. Photoenergy, 2020, 3617312 (2020); https://doi.org/10.1155/2020/3617312
- R. Kishor, D. Purchase, G.D. Saratale, L.F. Romanholo-Ferreira, C.M. Hussain, S.I. Mulla and R.N. Bharagava, J. Water Process Eng., 43, 102300 (2021); https://doi.org/10.1016/j.jwpe.2021.102300
- X. Liu, Y. Yang, H. Li, Z. Yang and Y. Fang, Chem. Eng. J., 408, 127259 (2021); https://doi.org/10.1016/j.cej.2020.127259
- Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge and P.K. Wong, Appl. Catal. B, 61, 1 (2005); https://doi.org/10.1016/j.apcatb.2005.03.008
- S. Kohtani, S. Makino, K. Tokumura, Y. Ishigaki, T. Matsunaga, A. Kudo, O. Nikaido, K. Hayakawa and R. Nakagaki, Chem. Lett., 31, 660 (2002); https://doi.org/10.1246/cl.2002.660
- S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
- M.Q. Yang, N. Zhang and Y.J. Xu, ACS Appl. Mater. Interfaces, 5, 1156 (2013); https://doi.org/10.1021/am3029798
- X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010); https://doi.org/10.1039/b917240h
- S. Ali, A. Razzaq and S. In, Catal. Today, 335, 39 (2019); https://doi.org/10.1016/j.cattod.2018.12.003
- M. Keshmiri, M. Mohseni and T. Troczynski, Appl. Catal. B, 53, 209 (2004); https://doi.org/10.1016/j.apcatb.2004.05.016
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
- J.Y. Jang, M.S. Kim, H.M. Jeong and C.M. Shin, Compos. Sci. Technol., 69, 186 (2009); https://doi.org/10.1016/j.compscitech.2008.09.039
- G. Jiang, X. Zheng, Y. Wang, T. Li and X. Sun, Powder Technol., 207, 465 (2011); https://doi.org/10.1016/j.powtec.2010.11.029
- T.D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 170, 226 (2011); https://doi.org/10.1016/j.cej.2011.03.060
- W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C, 115, 10694 (2011); https://doi.org/10.1021/jp2008804
- Y. Zhang, Z.R. Tang, X. Fu and Y.J. Xu, ACS Nano, 5, 7426 (2011); https://doi.org/10.1021/nn202519j
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
- G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, Carbon, 49, 2693 (2011); https://doi.org/10.1016/j.carbon.2011.02.059
- S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed., 42, 4908 (2003); https://doi.org/10.1002/anie.200351577
- X.G. Gao, L.X. Cheng, W.S. Jiang, X.K. Li and F. Xing, Front Chem., 9, 615164 (2021); https://doi.org/10.3389/fchem.2021.615164
- N. Serpone, J. Phys. Chem. B, 110, 24287 (2006); https://doi.org/10.1021/jp065659r
- M.D. Purkayastha, S. Sil, N. Singh, G.K. Darbha, S. Bhattacharyya, P.P. Ray, A.I. Mallick and T.P. Majumder, FlatChem, 22, 100180 (2020); https://doi.org/10.1016/j.flatc.2020.100180
- K. Azad and P. Gajanan, Chem. Sci. J., 8, 1000164 (2017); https://doi.org/10.4172/2150-3494.1000164
- P. Niu, Asian J. Chem., 25, 1103 (2013); https://doi.org/10.14233/ajchem.2013.13539
- R. Zha, R. Nadimicherla and X. Guo, J. Mater. Chem. A Mater. Energy Sustain., 3, 6565 (2015); https://doi.org/10.1039/C5TA00764J
- D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, J. Chen, A. Nattestad and S. Phanichphant, Sci. Rep., 4, 5757 (2014); https://doi.org/10.1038/srep05757
- R. Raliya, C. Avery, S. Chakrabarti and P. Biswas, Appl. Nanosci., 7, 253 (2017); https://doi.org/10.1007/s13204-017-0565-z
- R.K. Shah, Arab. J. Chem., 16, 104444 (2023); https://doi.org/10.1016/j.arabjc.2022.104444
- P.C. Dey and R. Das, Spectrochim. Acta A Mol. Biomol. Spectrosc., 231, 118122 (2020); https://doi.org/10.1016/j.saa.2020.118122
References
N. Bhattacharjee, I. Som, R. Saha and S. Mondal, Int. J. Environ. Anal. Chem., 104, 489 (2022); https://doi.org/10.1080/03067319.2021.2022130
J. Karpinska and U. Kotowska, Water, 11, 2017 (2019); https://doi.org/10.3390/w11102017
N. Morin-Crini, E. Lichtfouse, G. Liu, V. Balaram, A.R.L. Ribeiro, Z. Lu, F. Stock, E. Carmona, M.R. Teixeira, L.A. Picos-Corrales, J.C. Moreno-Piraján, L. Giraldo, C. Li, A. Pandey, D. Hocquet, G. Torri and G. Crini, Environ. Chem. Lett., 20, 2311 (2022); https://doi.org/10.1007/s10311-022-01447-4
M.T.H. Van Vliet, E.R. Jones, M. Florke, W.H.P. Franssen, N. Hanasaki, Y. Wada and J.R. Yearsley, Environ. Res. Lett., 16, 024020 (2021); https://doi.org/10.1088/1748-9326/abbfc3
R. Li, T. Li and Q. Zhou, Catalysts, 10, 804 (2020); https://doi.org/10.3390/catal10070804
M.M. Mahlambi, C.J. Ngila and B.B. Mamba, J. Nanomater., 2015, 790173 (2015); https://doi.org/10.1155/2015/790173
X. Kang, S. Liu, Z. Dai, Y. He, X. Song and Z. Tan, Catalysts, 9, 191 (2019); https://doi.org/10.3390/catal9020191
F. Tanos, A. Razzouk, G. Lesage, M. Cretin and M. Bechelany, ChemSusChem, 17, e202301139 (2024); https://doi.org/10.1002/cssc.202301139
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
G. Eda, G. Fanchini and M. Chhowalla, Nat. Nanotechnol., 3, 270 (2008); https://doi.org/10.1038/nnano.2008.83
J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang and L. Jiang, ACS Nano, 5, 590 (2011); https://doi.org/10.1021/nn102767d
Z. Wang, M. Zhang, Z. Song, M. Yaseen, Z. Huang, A. Wang, Z. Guisheng and S. Shao, J. Colloid Interface Sci., 624, 88 (2022); https://doi.org/10.1016/j.jcis.2022.05.094
S. Linley, Y.Y. Liu, C.J. Ptacek, D.W. Blowes and F.X. Gu, ACS Appl. Mater. Interfaces, 6, 4658 (2014); https://doi.org/10.1021/am4039272
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
B.Y.S. Chang, N.M. Huang, M.N. An’amt, A.R. Marlinda, Y. Norazriena, M.R. Muhamad, I. Harrison, H.N. Lim, C.H. Chia, Int. J. Nanomed., 7, 3379 (2012); https://doi.org/10.2147/IJN.S28189
S. Khanna, P. Marathey, S. Paneliya, P. Vinchhi, R. Chaudhari and J. Vora, Int. J. Hydrogen Energy, 47, 41698 (2022); https://doi.org/10.1016/j.ijhydene.2022.02.050
P. Muthirulan, C.N. Devi and M.M. Sundaram, Mater. Sci. Semicond., 25, 219 (2014); https://doi.org/10.1016/j.mssp.2013.11.036
D.N. Tafen, J. Wang, N.Q. Wu and J.P. Lewis, Appl. Phys. Lett., 94, 093101 (2009); https://doi.org/10.1063/1.3093820
J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, J. Am. Chem. Soc., 131, 12290 (2009); https://doi.org/10.1021/ja903781h
J.M. Herrmann, Catal. Today, 53, 115 (1999); https://doi.org/10.1016/S0920-5861(99)00107-8
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001); https://doi.org/10.1126/science.1061051
V. Stengl, S. Bakardjieva and N. Murafa, Mater. Chem. Phys., 114, 217 (2009); https://doi.org/10.1016/j.matchemphys.2008.09.025
N.R. Khalid, E. Ahmed, Z. Hong, L. Sana and M. Ahmed, Curr. Appl. Phys., 13, 659 (2013); https://doi.org/10.1016/j.cap.2012.11.003
R. Nawaz, C.F. Kait, H.Y. Chia, M.H. Isa and L.W. Huei, Environ. Technol. Innov., 19, 101007 (2020); https://doi.org/10.1016/j.eti.2020.101007
J.P. Jeon, D.H. Kweon, B.J. Jang, M.J. Ju and J.B. Baek, Adv. Sustain. Syst., 4, 2000197 (2020); https://doi.org/10.1002/adsu.202000197
L. Li, L. Yu, Z. Lin and G. Yang, ACS Appl. Mater. Interfaces, 8, 8536 (2016); https://doi.org/10.1021/acsami.6b00966
Y. Wang, L. Li, H. Lu, C. Wang, Y. Zhao, S. Kuga, Y. Huang and M. Wu, J. Phys. Chem. Solids, 162, 110448 (2022); https://doi.org/10.1016/j.jpcs.2021.110448
N. Ahmed, A.A. Farghali, W.M.A. El Rouby and N.K. Allam, Int. J. Hydrogen Energy, 42, 29131 (2017); https://doi.org/10.1016/j.ijhydene.2017.10.014
F. Li, Y. Huang, H. Peng, Y. Cao and Y. Niu, Int. J. Photoenergy, 2020, 3617312 (2020); https://doi.org/10.1155/2020/3617312
R. Kishor, D. Purchase, G.D. Saratale, L.F. Romanholo-Ferreira, C.M. Hussain, S.I. Mulla and R.N. Bharagava, J. Water Process Eng., 43, 102300 (2021); https://doi.org/10.1016/j.jwpe.2021.102300
X. Liu, Y. Yang, H. Li, Z. Yang and Y. Fang, Chem. Eng. J., 408, 127259 (2021); https://doi.org/10.1016/j.cej.2020.127259
Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge and P.K. Wong, Appl. Catal. B, 61, 1 (2005); https://doi.org/10.1016/j.apcatb.2005.03.008
S. Kohtani, S. Makino, K. Tokumura, Y. Ishigaki, T. Matsunaga, A. Kudo, O. Nikaido, K. Hayakawa and R. Nakagaki, Chem. Lett., 31, 660 (2002); https://doi.org/10.1246/cl.2002.660
S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
M.Q. Yang, N. Zhang and Y.J. Xu, ACS Appl. Mater. Interfaces, 5, 1156 (2013); https://doi.org/10.1021/am3029798
X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010); https://doi.org/10.1039/b917240h
S. Ali, A. Razzaq and S. In, Catal. Today, 335, 39 (2019); https://doi.org/10.1016/j.cattod.2018.12.003
M. Keshmiri, M. Mohseni and T. Troczynski, Appl. Catal. B, 53, 209 (2004); https://doi.org/10.1016/j.apcatb.2004.05.016
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
J.Y. Jang, M.S. Kim, H.M. Jeong and C.M. Shin, Compos. Sci. Technol., 69, 186 (2009); https://doi.org/10.1016/j.compscitech.2008.09.039
G. Jiang, X. Zheng, Y. Wang, T. Li and X. Sun, Powder Technol., 207, 465 (2011); https://doi.org/10.1016/j.powtec.2010.11.029
T.D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 170, 226 (2011); https://doi.org/10.1016/j.cej.2011.03.060
W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C, 115, 10694 (2011); https://doi.org/10.1021/jp2008804
Y. Zhang, Z.R. Tang, X. Fu and Y.J. Xu, ACS Nano, 5, 7426 (2011); https://doi.org/10.1021/nn202519j
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, Carbon, 49, 2693 (2011); https://doi.org/10.1016/j.carbon.2011.02.059
S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed., 42, 4908 (2003); https://doi.org/10.1002/anie.200351577
X.G. Gao, L.X. Cheng, W.S. Jiang, X.K. Li and F. Xing, Front Chem., 9, 615164 (2021); https://doi.org/10.3389/fchem.2021.615164
N. Serpone, J. Phys. Chem. B, 110, 24287 (2006); https://doi.org/10.1021/jp065659r
M.D. Purkayastha, S. Sil, N. Singh, G.K. Darbha, S. Bhattacharyya, P.P. Ray, A.I. Mallick and T.P. Majumder, FlatChem, 22, 100180 (2020); https://doi.org/10.1016/j.flatc.2020.100180
K. Azad and P. Gajanan, Chem. Sci. J., 8, 1000164 (2017); https://doi.org/10.4172/2150-3494.1000164
P. Niu, Asian J. Chem., 25, 1103 (2013); https://doi.org/10.14233/ajchem.2013.13539
R. Zha, R. Nadimicherla and X. Guo, J. Mater. Chem. A Mater. Energy Sustain., 3, 6565 (2015); https://doi.org/10.1039/C5TA00764J
D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, J. Chen, A. Nattestad and S. Phanichphant, Sci. Rep., 4, 5757 (2014); https://doi.org/10.1038/srep05757
R. Raliya, C. Avery, S. Chakrabarti and P. Biswas, Appl. Nanosci., 7, 253 (2017); https://doi.org/10.1007/s13204-017-0565-z
R.K. Shah, Arab. J. Chem., 16, 104444 (2023); https://doi.org/10.1016/j.arabjc.2022.104444
P.C. Dey and R. Das, Spectrochim. Acta A Mol. Biomol. Spectrosc., 231, 118122 (2020); https://doi.org/10.1016/j.saa.2020.118122