Copyright (c) 2024 Bondada N.B. Vaidehi, Hymavathi Veeravarapu, Murali Krishna Kumar Muthyala
This work is licensed under a Creative Commons Attribution 4.0 International License.
Docking Studies, Synthesis, SAR and Anti-TB Activity of Glycinamido Analogues
Corresponding Author(s) : Murali Krishna Kumar Muthyala
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
Mycolic acid is a crucial component of the Mycobacterium tuberculosis cell wall and mycolic acid methyltransferases (MAMTs) are essential for mycolic acids to mature. In the present study, an inhouse library of 330 ligands was designed taking glycinamido moiety as scaffold. Virtual screening was carried out with this library of compounds against MmaA1 as the target protein. About 55 hits were identified through docking, ADMET studies and these molecules were synthesized by the Schotten-Baumann reaction followed by a nucleophilic substitution reaction. All the compounds were subjected to in vitro anti-Tb screening by microplate alamar blue assay (MABA). The Mdb1, Mdb4 & Meb1 exhibited excellent activity against M. tuberculosis H37Rv bacilli strain with an MIC of 1.56 µg/mL. The SAR studies shows that the aryl ring attached directly to the nitrogen atom as present in 2(-N-substituted glycinamido) derivatives is essential for the compound to exhibit potent anti-TB activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- https://www.nhs.uk/conditions/tuberculosis-tb/#:~:text=Tuberculosis% 20(TB)%20is%20caused%20by,a%20long%20period%20of%20time
- T.B. Facts, https://www.cdc.gov/tb/worldtbday/history.html
- World Health Organization (WHO), Global Tuberculosis Report (2022); https://www.who.int/publications/i/item/9789240061729
- P. Miotto, Y. Zhang, D.M. Cirillo and W.C. Yam, Respirology, 23, 1098 (2018); https://doi.org/10.1111/resp.13393
- TB India Report (2022); http://www.tbcindia.gov.in (2022). Accessed on 25.03.2022.
- S. Tiberi, M. Muñoz-Torrico, R. Duarte, M. Dalcolmo, L. D’Ambrosio and G.-B. Migliori, Pulmonology, 24, 86 (2018); https://doi.org/10.1016/j.rppnen.2017.10.009
- C. Perrin, K. Athersuch, G. Elder, M. Martin and A. Alsalhani, BMJ Glob. Health, 7, e007490 (2022); https://doi.org/10.1136/bmjgh-2021-007490
- P.J. Brennan, Tuberculosis, 83, 91 (2003); https://doi.org/10.1016/s1472-9792(02)00089-6
- O. Zimhony, J.S. Cox, J.T. Welch, C. Vilchèze and W.R. Jacobs Jr, Nat. Med., 6, 1043 (2000); https://doi.org/10.1038/79558
- M.S. Glickman, J.S. Cox and W.R. Jacobs Jr., Mol. Cell, 5, 717 (2000); https://doi.org/10.1016/S1097-2765(00)80250-6
- M.A. Forrellad, L.I. Klepp, A. Gioffré, J. Sabio y García, H.R. Morbidoni, M.P. Santangelo, A.A. Cataldi and F. Bigi, Virulence, 4, 3 (2013); https://doi.org/10.4161/viru.22329
- K. Takayama, C. Wang and G.S. Besra, Clin. Microbiol. Rev., 18, 81 (2005); https://doi.org/10.1128/CMR.18.1.81-101.2005
- H. Veeravarapu, V. Malkhed, K.K. Mustyala, R. Vadija, R. Malikanti, U. Vuruputuri and M.K.K. Muthyala, Mol. Divers., 25, 351 (2021); https://doi.org/10.1007/s11030-020-10107-0
- H. Veeravarapu, M. Tirumalasetty, S.P. Kurati, U. Wunnava and M.K.K. Muthyala, Bioorg. Med. Chem. Lett., 30, 127603 (2020); https://doi.org/10.1016/j.bmcl.2020.127603
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- L. Schrodinger, The PyMOL Molecular Graphics System, Version 1.3r1 (2010).
- BIOVIA, Dassault Systemes, Discovery Studio Visualizer, v21.1.0.20298; Dassault Systemes: Sandiego, CA, USA (2021).
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
- Molinspiration Cheminformatics Free Web Services, Available online: https://www.molinspiration.com (accessed on 12 March 2023).
- J.L. Dahlin, J. Inglese and M.A. Walters, Nat. Rev. Drug Discov., 14, 279 (2015); https://doi.org/10.1038/nrd4578
- L. Di, Expert Opin. Drug Metab. Toxicol., 10, 379 (2014); https://doi.org/10.1517/17425255.2014.876006
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1
- A. Jarrahpour, J. Fathi, M. Mimouni, T.B. Hadda, J. Sheikh, Z. Chohan and A. Parvez, Med. Chem. Res., 21, 1984 (2012); https://doi.org/10.1007/s00044-011-9723-0
- S. Tahlan, K. Ramasamy, S. Lim, S.A. Shah, V. Mani and B. Narasimhan, Chem. Cent. J., 12, 139 (2018); https://doi.org/10.1186/s13065-018-0513-3
- S.G. Franzblau, R.S. Witzig, J.C. Mclaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microbiol., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
- C.B. Inderlied and M. Salfinger, Antimicrobial Agents and Susceptibility Tests: Mycobacteria, Manual of Clinical Microbiology, ASM Press, Washington, edn. 6, p. 1385 (1995).
- M.A. Morgan, C.D. Horstmeier, D.R. DeYoung and G.D. Roberts, J. Clin. Microbiol., 18, 384 (1983); https://doi.org/10.1128/jcm.18.2.384-388.1983
- S. Ali, A. Ehtram, N. Arora, P. Manjunath, D. Roy, N.Z. Ehtesham and S.E. Hasnain, Front. Cell. Infect. Microbiol., 11, 622487 (2021); https://doi.org/10.3389/fcimb.2021.622487
- J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz and J. Liang, Nucleic Acids Res., 34, 116 (2006); https://doi.org/10.1093/nar/gkl282
- T. Halgren, Chem. Biol. Drug Des., 69, 146 (2007); https://doi.org/10.1111/j.1747-0285.2007.00483.x
- D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, Nucleic Acids Res., 33, 363 (2005); https://doi.org/10.1093/nar/gki481
- J. Vaubourgeix, J.F. Bardou, F. Boisssier, S. Julien, P. Constant, O. Ploux, M. Daffe, A. Quemard, L. Mourey, J. Biol. Chem., 284, 19321 (2009); https://doi.org/10.1074/jbc.M809599200
References
https://www.nhs.uk/conditions/tuberculosis-tb/#:~:text=Tuberculosis% 20(TB)%20is%20caused%20by,a%20long%20period%20of%20time
T.B. Facts, https://www.cdc.gov/tb/worldtbday/history.html
World Health Organization (WHO), Global Tuberculosis Report (2022); https://www.who.int/publications/i/item/9789240061729
P. Miotto, Y. Zhang, D.M. Cirillo and W.C. Yam, Respirology, 23, 1098 (2018); https://doi.org/10.1111/resp.13393
TB India Report (2022); http://www.tbcindia.gov.in (2022). Accessed on 25.03.2022.
S. Tiberi, M. Muñoz-Torrico, R. Duarte, M. Dalcolmo, L. D’Ambrosio and G.-B. Migliori, Pulmonology, 24, 86 (2018); https://doi.org/10.1016/j.rppnen.2017.10.009
C. Perrin, K. Athersuch, G. Elder, M. Martin and A. Alsalhani, BMJ Glob. Health, 7, e007490 (2022); https://doi.org/10.1136/bmjgh-2021-007490
P.J. Brennan, Tuberculosis, 83, 91 (2003); https://doi.org/10.1016/s1472-9792(02)00089-6
O. Zimhony, J.S. Cox, J.T. Welch, C. Vilchèze and W.R. Jacobs Jr, Nat. Med., 6, 1043 (2000); https://doi.org/10.1038/79558
M.S. Glickman, J.S. Cox and W.R. Jacobs Jr., Mol. Cell, 5, 717 (2000); https://doi.org/10.1016/S1097-2765(00)80250-6
M.A. Forrellad, L.I. Klepp, A. Gioffré, J. Sabio y García, H.R. Morbidoni, M.P. Santangelo, A.A. Cataldi and F. Bigi, Virulence, 4, 3 (2013); https://doi.org/10.4161/viru.22329
K. Takayama, C. Wang and G.S. Besra, Clin. Microbiol. Rev., 18, 81 (2005); https://doi.org/10.1128/CMR.18.1.81-101.2005
H. Veeravarapu, V. Malkhed, K.K. Mustyala, R. Vadija, R. Malikanti, U. Vuruputuri and M.K.K. Muthyala, Mol. Divers., 25, 351 (2021); https://doi.org/10.1007/s11030-020-10107-0
H. Veeravarapu, M. Tirumalasetty, S.P. Kurati, U. Wunnava and M.K.K. Muthyala, Bioorg. Med. Chem. Lett., 30, 127603 (2020); https://doi.org/10.1016/j.bmcl.2020.127603
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
L. Schrodinger, The PyMOL Molecular Graphics System, Version 1.3r1 (2010).
BIOVIA, Dassault Systemes, Discovery Studio Visualizer, v21.1.0.20298; Dassault Systemes: Sandiego, CA, USA (2021).
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
Molinspiration Cheminformatics Free Web Services, Available online: https://www.molinspiration.com (accessed on 12 March 2023).
J.L. Dahlin, J. Inglese and M.A. Walters, Nat. Rev. Drug Discov., 14, 279 (2015); https://doi.org/10.1038/nrd4578
L. Di, Expert Opin. Drug Metab. Toxicol., 10, 379 (2014); https://doi.org/10.1517/17425255.2014.876006
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1
A. Jarrahpour, J. Fathi, M. Mimouni, T.B. Hadda, J. Sheikh, Z. Chohan and A. Parvez, Med. Chem. Res., 21, 1984 (2012); https://doi.org/10.1007/s00044-011-9723-0
S. Tahlan, K. Ramasamy, S. Lim, S.A. Shah, V. Mani and B. Narasimhan, Chem. Cent. J., 12, 139 (2018); https://doi.org/10.1186/s13065-018-0513-3
S.G. Franzblau, R.S. Witzig, J.C. Mclaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microbiol., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
C.B. Inderlied and M. Salfinger, Antimicrobial Agents and Susceptibility Tests: Mycobacteria, Manual of Clinical Microbiology, ASM Press, Washington, edn. 6, p. 1385 (1995).
M.A. Morgan, C.D. Horstmeier, D.R. DeYoung and G.D. Roberts, J. Clin. Microbiol., 18, 384 (1983); https://doi.org/10.1128/jcm.18.2.384-388.1983
S. Ali, A. Ehtram, N. Arora, P. Manjunath, D. Roy, N.Z. Ehtesham and S.E. Hasnain, Front. Cell. Infect. Microbiol., 11, 622487 (2021); https://doi.org/10.3389/fcimb.2021.622487
J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz and J. Liang, Nucleic Acids Res., 34, 116 (2006); https://doi.org/10.1093/nar/gkl282
T. Halgren, Chem. Biol. Drug Des., 69, 146 (2007); https://doi.org/10.1111/j.1747-0285.2007.00483.x
D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, Nucleic Acids Res., 33, 363 (2005); https://doi.org/10.1093/nar/gki481
J. Vaubourgeix, J.F. Bardou, F. Boisssier, S. Julien, P. Constant, O. Ploux, M. Daffe, A. Quemard, L. Mourey, J. Biol. Chem., 284, 19321 (2009); https://doi.org/10.1074/jbc.M809599200