Copyright (c) 2024 Randhi Uma Devi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Magnesium Sulfide Nanoparticles of Hordeum vulgare: Green Synthesis and their Nano-nutrient Impact on Seed Priming Effect, Germination, Root and Shoot Length of Brassica nigra and Trigonella foenum-graecum
Corresponding Author(s) : Randhi Uma Devi
Asian Journal of Chemistry,
Vol. 36 No. 6 (2024): Vol 36 Issue 6, 2024
Abstract
This work describes the green synthesis of magnesium sulfide nanoparticles (MgS NPs) using an extract from Hordeum vulgare leaves and characterized by X-ray diffraction (XRD), UV-visible spectroscopy and scanning electron microscopy (SEM) techniques. The MgS NPs generated were spherical and had a high level of purity. They had a band gap of 2.0 eV, a uniform distribution and an average crystal size of 14 nm. The synthesized MgS nanoparticles exhibited several geometrical morphologies, including spherical, rod-shaped and bean-shaped structures. The nanoparticles exhibited an average size of 5 nm with a band gap of precisely 4.85 eV. The efficacy of MgS NPs on Brassica nigra and Trigonella foenum-graecum for seed priming, germination rate and time, root length and shoot length has also been assessed using different doses. The optimal germination occurs at concentrations of 15 mg/100 mL and 20 mg/100 mL, while the germination is impeded when the concentration exceed 30 mg/100 mL. The MgS NPs exhibit a diminutive size and high reactivity, which allows them to augment the water absorption and nutrient control capacities of seeds. Consequently, this promotes the germination process and plant growth by decreasing the average duration of germination. Seeds of Brassica nigra and Trigonella foenum-graecum that had been subjected to treatment with MgS NPs had enhanced average root and shoot lengths, as well as accelerated germination. This study suggests several possibilities for using environmental friendly nanotechnology to improve agricultural practices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.M.E. Azzazy, M.M.H. Mansour, T.M. Samir and R. Franco, Clin. Chem. Lab. Med., 50, 193 (2012); https://doi.org/10.1515/cclm.2011.732
- Z. Gul, S. Ullah, S. Khan, H. Ullah, M.U. Khan, M. Ullah, S. Ali and A.A. Altaf, Crit. Rev. Anal. Chem., 54, 44 (2024); https://doi.org/10.1080/10408347.2022.2049676
- N. Kaur, Talanta, 267, 125114 (2024); https://doi.org/10.1016/j.talanta.2023.125114
- K.R. Pyun, K. Kwon, M.J. Yoo, K.K. Kim, D. Gong, W.H. Yeo, S. Han and S.H. Ko, Natl. Sci. Rev., 11, nwad298 (2023); https://doi.org/10.1093/nsr/nwad298
- A. Al-Taie and E.Ö. Bülbül, J. Drug Target., 32, 45 (2024); https://doi.org/10.1080/1061186X.2023.2295803
- A. Nanda, P. Pandey, P.S. Rajinikanth and N. Singh, Int. J. Biol. Macromol., 260, 129416 (2024); https://doi.org/10.1016/j.ijbiomac.2024.129416
- C. Wang, S. Sun, P. Wang, H. Zhao and W. Li, Talanta, 269, 25 (2024); https://doi.org/10.1016/j.talanta.2023.125462
- S. Mohammadi, F. Jabbari, G. Cidonio and V. Babaeipour, Pestic. Biochem. Physiol., 198, 105722 (2024); https://doi.org/10.1016/j.pestbp.2023.105722
- A. Chakraborty, A. Diwan and J. Tatake, AIMS Microbiol., 9, 444 (2023); https://doi.org/10.3934/microbiol.2023024
- M.K. Iqubal, H. Kaur, S. Md, N.A. Alhakamy, A. Iqubal, J. Ali and S. Baboota, Drug Deliv., 29, 3197 (2022); https://doi.org/10.1080/10717544.2022.2132018
- R. Pamanji, T.N. Kumareshan, L. Priya S, G. Sivan and J. Selvin, Chemosphere, 349, 140867 (2024); https://doi.org/10.1016/j.chemosphere.2023.140867
- N.S. Alsaiari, F.M. Alzahrani, A. Amari, H. Osman, H.N. Harharah, N. Elboughdiri and M.A. Tahoon, Molecules, 28, 463 (2023); https://doi.org/10.3390/molecules28010463
- A. Puri, P. Mohite, S. Maitra, V. Subramaniyan, V. Kumarasamy, D.E. Uti, A.A. Sayed, F.M. El-Demerdash, M. Algahtani, A.F. El-Kott, A.A. Shati, M. Albaik, M.M. Abdel-Daim and I.J. Atangwho, Biomed. Pharmacother., 170, 116083 (2024); https://doi.org/10.1016/j.biopha.2023.116083
- D.S. Chormey, B.T. Zaman, T.B. Kustanto, S.E. Bodur, S. Bodur, Z. Tekin, O. Nejati and S. Bakýrdere, Nanoscale, 15, 19423 (2023); https://doi.org/10.1039/D3NR03843B
- M.M. El-Sheekh, H.H. Morsi, L.H.S. Hassan and S.S. Ali, Microbiol. Res., 263, 127111 (2022); https://doi.org/10.1016/j.micres.2022.127111
- S. Ghosh, B. Sarkar, A. Kaushik and E. Mostafavi, Sci. Total Environ., 838, 156212 (2022); https://doi.org/10.1016/j.scitotenv.2022.156212
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
- N. Sundararajan, H.S. Habeebsheriff, K. Dhanabalan, V.H. Cong, L.S. Wong, R. Rajamani and B.K. Dhar, Glob. Chall., 8, 2300187 (2023); https://doi.org/10.1002/gch2.202300187
- Q. Wang, C. Shan, P. Zhang, W. Zhao, G. Zhu, Y. Sun, Y. Jiang, N. Shakoor and Y. Rui, Environ. Sci. Pollut. Res. Int., 31, 1890 (2023); https://doi.org/10.1007/s11356-023-31207-y
- P. Acharya, G.K. Jayaprakasha, K.M. Crosby, J.L. Jifon and B.S. Patil, ACS Sustain. Chem.& Eng., 7, 14580 (2019); https://doi.org/10.1021/acssuschemeng.9b02180
- Y. Afagh, G. Elham and S. Mehdi, in eds.: O. Manuel and F.-S. Anabela, Seed Nanopriming to Mitigate Abiotic Stresses in Plants, In: Abiotic Stress in Plants. IntechOpen, Rijeka, Ch. 10 (2023).
- A. Singh, V.D. Rajput, K. Ghazaryan, S.K. Gupta and T. Minkina, Nanopriming Approach to Sustainable Agriculture, IGI Global, Hershey, PA, USA, pp. 1-453 (2023).
- N. Ahmed, B. Zhang, B. Bozdar, S. Chachar, M. Rai, J. Li, Y. Li, F. Hayat, Z. Chachar and P. Tu, Front. Plant Sci., 14, 1285512 (2023); https://doi.org/10.3389/fpls.2023.1285512
- Z.C. Chen, W.T. Peng, J. Li and H. Liao, Semin. Cell Dev. Biol., 74, 142 (2018); https://doi.org/10.1016/j.semcdb.2017.08.005
- S. Chaudhary, S.S. Sindhu, R. Dhanker and A. Kumari, Microbiol. Res., 271, 127340 (2023); https://doi.org/10.1016/j.micres.2023.127340
- Z. Ren, R.Y. Wang, X.Y. Huang and Y. Wang, Front. Plant Sci., 13, 846518 (2022); https://doi.org/10.3389/fpls.2022.846518
- F.R. Blattner, in eds.: N. Stein and G.J. Muehlbauer, Taxonomy of the Genus Hordeum and Barley (Hordeum vulgare), In: The Barley Genome, Springer International Publishing, Cham, pp. 11–23 (2018).
- A.B. Morales-Díaz, H. Ortega-Ortíz, A. Juárez-Maldonado, G. Cadenas-Pliego, S. González-Morales and A. Benavides-Mendoza, Adv. Nat. Sci.: Nanosci. Nanotechnol., 8, 013001 (2017); https://doi.org/10.1088/2043-6254/8/1/013001
- S. Afsheen, H. Naseer, T. Iqbal, M. Abrar, A. Bashir and M. Ijaz, Mater. Chem. Phys., 252, 123216 (2020); https://doi.org/10.1016/j.matchemphys.2020.123216
- Q. Xie and F. McCourt, Nanotechnology Engineering NE 320L Lab Manual, University of Waterloo, Waterloo, Canada (2008).
- A.R. West, Solid State Chemistry and its Applications, Wiley, edn 2 (2022).
- Z. Bujòáková, E. Dutková, M. Kello, J. Mojžiš, M. Baláž, P. Baláž and O. Shpotyuk, Nanoscale Res. Lett., 12, 328 (2017); https://doi.org/10.1186/s11671-017-2103-z
- S.K. Moorthy, C.H. Ashok, K.V. Rao and C. Viswanathan, Mater. Today Proc., 2, 4360 (2015); https://doi.org/10.1016/j.matpr.2015.10.027
- P. Dahal and K.J. Bradford, J. Exp. Bot., 41, 1441 (1990); https://doi.org/10.1093/jxb/41.11.1441
- H.A. Farahani, P. Moaveni and K. Maroufi, Adv. Environ. Biol., 5, 2253 (2011).
- H. Sevik and K. Guney, Scient. World J., 2013, 909507 (2013); https://doi.org/10.1155/2013/909507
- M. Albrecht and B. McCarthy, Flora (Jena), 201, 24 (2006); https://doi.org/10.1016/j.flora.2005.04.001
- N. Okagami and M. Kawai, Plant Physiol., 60, 360 (1977); https://doi.org/10.1104/pp.60.3.360
References
H.M.E. Azzazy, M.M.H. Mansour, T.M. Samir and R. Franco, Clin. Chem. Lab. Med., 50, 193 (2012); https://doi.org/10.1515/cclm.2011.732
Z. Gul, S. Ullah, S. Khan, H. Ullah, M.U. Khan, M. Ullah, S. Ali and A.A. Altaf, Crit. Rev. Anal. Chem., 54, 44 (2024); https://doi.org/10.1080/10408347.2022.2049676
N. Kaur, Talanta, 267, 125114 (2024); https://doi.org/10.1016/j.talanta.2023.125114
K.R. Pyun, K. Kwon, M.J. Yoo, K.K. Kim, D. Gong, W.H. Yeo, S. Han and S.H. Ko, Natl. Sci. Rev., 11, nwad298 (2023); https://doi.org/10.1093/nsr/nwad298
A. Al-Taie and E.Ö. Bülbül, J. Drug Target., 32, 45 (2024); https://doi.org/10.1080/1061186X.2023.2295803
A. Nanda, P. Pandey, P.S. Rajinikanth and N. Singh, Int. J. Biol. Macromol., 260, 129416 (2024); https://doi.org/10.1016/j.ijbiomac.2024.129416
C. Wang, S. Sun, P. Wang, H. Zhao and W. Li, Talanta, 269, 25 (2024); https://doi.org/10.1016/j.talanta.2023.125462
S. Mohammadi, F. Jabbari, G. Cidonio and V. Babaeipour, Pestic. Biochem. Physiol., 198, 105722 (2024); https://doi.org/10.1016/j.pestbp.2023.105722
A. Chakraborty, A. Diwan and J. Tatake, AIMS Microbiol., 9, 444 (2023); https://doi.org/10.3934/microbiol.2023024
M.K. Iqubal, H. Kaur, S. Md, N.A. Alhakamy, A. Iqubal, J. Ali and S. Baboota, Drug Deliv., 29, 3197 (2022); https://doi.org/10.1080/10717544.2022.2132018
R. Pamanji, T.N. Kumareshan, L. Priya S, G. Sivan and J. Selvin, Chemosphere, 349, 140867 (2024); https://doi.org/10.1016/j.chemosphere.2023.140867
N.S. Alsaiari, F.M. Alzahrani, A. Amari, H. Osman, H.N. Harharah, N. Elboughdiri and M.A. Tahoon, Molecules, 28, 463 (2023); https://doi.org/10.3390/molecules28010463
A. Puri, P. Mohite, S. Maitra, V. Subramaniyan, V. Kumarasamy, D.E. Uti, A.A. Sayed, F.M. El-Demerdash, M. Algahtani, A.F. El-Kott, A.A. Shati, M. Albaik, M.M. Abdel-Daim and I.J. Atangwho, Biomed. Pharmacother., 170, 116083 (2024); https://doi.org/10.1016/j.biopha.2023.116083
D.S. Chormey, B.T. Zaman, T.B. Kustanto, S.E. Bodur, S. Bodur, Z. Tekin, O. Nejati and S. Bakýrdere, Nanoscale, 15, 19423 (2023); https://doi.org/10.1039/D3NR03843B
M.M. El-Sheekh, H.H. Morsi, L.H.S. Hassan and S.S. Ali, Microbiol. Res., 263, 127111 (2022); https://doi.org/10.1016/j.micres.2022.127111
S. Ghosh, B. Sarkar, A. Kaushik and E. Mostafavi, Sci. Total Environ., 838, 156212 (2022); https://doi.org/10.1016/j.scitotenv.2022.156212
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
N. Sundararajan, H.S. Habeebsheriff, K. Dhanabalan, V.H. Cong, L.S. Wong, R. Rajamani and B.K. Dhar, Glob. Chall., 8, 2300187 (2023); https://doi.org/10.1002/gch2.202300187
Q. Wang, C. Shan, P. Zhang, W. Zhao, G. Zhu, Y. Sun, Y. Jiang, N. Shakoor and Y. Rui, Environ. Sci. Pollut. Res. Int., 31, 1890 (2023); https://doi.org/10.1007/s11356-023-31207-y
P. Acharya, G.K. Jayaprakasha, K.M. Crosby, J.L. Jifon and B.S. Patil, ACS Sustain. Chem.& Eng., 7, 14580 (2019); https://doi.org/10.1021/acssuschemeng.9b02180
Y. Afagh, G. Elham and S. Mehdi, in eds.: O. Manuel and F.-S. Anabela, Seed Nanopriming to Mitigate Abiotic Stresses in Plants, In: Abiotic Stress in Plants. IntechOpen, Rijeka, Ch. 10 (2023).
A. Singh, V.D. Rajput, K. Ghazaryan, S.K. Gupta and T. Minkina, Nanopriming Approach to Sustainable Agriculture, IGI Global, Hershey, PA, USA, pp. 1-453 (2023).
N. Ahmed, B. Zhang, B. Bozdar, S. Chachar, M. Rai, J. Li, Y. Li, F. Hayat, Z. Chachar and P. Tu, Front. Plant Sci., 14, 1285512 (2023); https://doi.org/10.3389/fpls.2023.1285512
Z.C. Chen, W.T. Peng, J. Li and H. Liao, Semin. Cell Dev. Biol., 74, 142 (2018); https://doi.org/10.1016/j.semcdb.2017.08.005
S. Chaudhary, S.S. Sindhu, R. Dhanker and A. Kumari, Microbiol. Res., 271, 127340 (2023); https://doi.org/10.1016/j.micres.2023.127340
Z. Ren, R.Y. Wang, X.Y. Huang and Y. Wang, Front. Plant Sci., 13, 846518 (2022); https://doi.org/10.3389/fpls.2022.846518
F.R. Blattner, in eds.: N. Stein and G.J. Muehlbauer, Taxonomy of the Genus Hordeum and Barley (Hordeum vulgare), In: The Barley Genome, Springer International Publishing, Cham, pp. 11–23 (2018).
A.B. Morales-Díaz, H. Ortega-Ortíz, A. Juárez-Maldonado, G. Cadenas-Pliego, S. González-Morales and A. Benavides-Mendoza, Adv. Nat. Sci.: Nanosci. Nanotechnol., 8, 013001 (2017); https://doi.org/10.1088/2043-6254/8/1/013001
S. Afsheen, H. Naseer, T. Iqbal, M. Abrar, A. Bashir and M. Ijaz, Mater. Chem. Phys., 252, 123216 (2020); https://doi.org/10.1016/j.matchemphys.2020.123216
Q. Xie and F. McCourt, Nanotechnology Engineering NE 320L Lab Manual, University of Waterloo, Waterloo, Canada (2008).
A.R. West, Solid State Chemistry and its Applications, Wiley, edn 2 (2022).
Z. Bujòáková, E. Dutková, M. Kello, J. Mojžiš, M. Baláž, P. Baláž and O. Shpotyuk, Nanoscale Res. Lett., 12, 328 (2017); https://doi.org/10.1186/s11671-017-2103-z
S.K. Moorthy, C.H. Ashok, K.V. Rao and C. Viswanathan, Mater. Today Proc., 2, 4360 (2015); https://doi.org/10.1016/j.matpr.2015.10.027
P. Dahal and K.J. Bradford, J. Exp. Bot., 41, 1441 (1990); https://doi.org/10.1093/jxb/41.11.1441
H.A. Farahani, P. Moaveni and K. Maroufi, Adv. Environ. Biol., 5, 2253 (2011).
H. Sevik and K. Guney, Scient. World J., 2013, 909507 (2013); https://doi.org/10.1155/2013/909507
M. Albrecht and B. McCarthy, Flora (Jena), 201, 24 (2006); https://doi.org/10.1016/j.flora.2005.04.001
N. Okagami and M. Kawai, Plant Physiol., 60, 360 (1977); https://doi.org/10.1104/pp.60.3.360