Copyright (c) 2024 Ganesh Sonawane, Shweta Sharma, Ritu Gilhotra
This work is licensed under a Creative Commons Attribution 4.0 International License.
In silico Analysis of 1,3,4-Oxadiazoles as Potential BCL-2 Inhibitor for Cancer Treatment
Corresponding Author(s) : Ganesh Sonawane
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
The possible efficacy of 1,3,4-oxadiazoles as B-cell lymphoma 2 (BCL-2) inhibitors for cancer treatment is investigated in this study using in silico approaches such as molecular docking, ADME and toxicity prediction. Molecular docking studies predict the binding affinities and binding modes of a series of 1,3,4-oxadiazole derivatives with the BCL-2 protein. The results revealed that the compounds with strong interactions and favourable binding modes, indicating their potential as BCL-2 inhibitors. An ADMET analysis assesses the pharmacokinetic properties and potential toxicity of the identified compounds. Parameters such as absorption, distribution, metabolism, excretion and toxicity (ADMET) were evaluated to predict the suitability of these 1,3,4-oxadiazoles as drug candidates for cancer therapy. The integration of molecular docking and ADMET analysis data led to the identification and prioritization of lead compounds with potent BCL-2 inhibitory activity and favourable pharmacokinetic profiles. This research contributes to the on-going efforts in drug discovery, emphasizing the potential of 1,3,4-oxadiazoles as a class of compounds with significant anticancer properties through BCL-2 inhibition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Adams and S. Cory, Oncogene, 26, 1324 (2007); https://doi.org/10.1038/sj.onc.1210220
- R.J. Youle and A. Strasser, Nat. Rev. Mol. Cell Biol., 9, 47 (2008); https://doi.org/10.1038/nrm2308
- D. Hanahan and R.A. Weinberg, Cell, 144, 646 (2011); https://doi.org/10.1016/j.cell.2011.02.013
- R. Hamdy, S.A. Elseginy, N.I. Ziedan, M. El-Sadek, E. Lashin, A.T. Jones and A.D. Westwell, Int. J. Mol. Sci., 21, 8980 (2020); https://doi.org/10.3390/ijms21238980
- A.R. Delbridge and A. Strasser, Cell Death Differ., 22, 1071 (2015); https://doi.org/10.1038/cdd.2015.50
- S. Cory and J.M. Adams, Nat. Rev. Cancer, 2, 647 (2002); https://doi.org/10.1038/nrc883
- F. Marra, A. Gastaldelli, G. Svegliati Baroni, G. Tell and C. Tiribelli, Trends Mol. Med., 14, 72 (2008); https://doi.org/10.1016/j.molmed.2007.12.003
- T. Oltersdorf, S.W. Elmore, A.R. Shoemaker, R.C. Armstrong, D.J. Augeri, B.A. Belli, M. Bruncko, T.L. Deckwerth, J. Dinges, P.J. Hajduk, M.K. Joseph, S. Kitada, S.J. Korsmeyer, A.R. Kunzer, A. Letai, C. Li, M.J. Mitten, D.G. Nettesheim, S.C. Ng, P.M. Nimmer, J.M. O’Connor, A. Oleksijew, A.M. Petros, J.C. Reed, S.K. Tahir, C.B. Thompson, K.J. Tomaselli, W. Shen, B. Wang, M.D. Wendt, H. Zhang, S.W. Fesik and S.H. Rosenberg, Nature, 435, 677 (2005); https://doi.org/10.1038/nature03579
- M. Vogler, Cell Death Differ., 19, 67 (2012); https://doi.org/10.1038/cdd.2011.158
- J.C. Reed, Cell Death Differ., 13, 1378 (2006); https://doi.org/10.1038/sj.cdd.4401975
- A. Das, M. Sarangi, K. Jangid, V. Kumar, A. Kumar, P.P. Singh, K. Kaur, V. Kumar, S. Chakraborty and V. Jaitak, J. Biomol. Struct. Dyn., (2024);https://doi.org/10.1080/07391102.2023.2256876
- T.A. Yousef, A.G. Alhamzani, M.M. Abou-Krisha, G. Kanthimathi, M.S. Raghu, K.Y. Kumar, M.K. Prashanth and B.H. Jeon, Heliyon, 9, e13460 (2023); https://doi.org/10.1016/j.heliyon.2023.e13460
- K. Patil, M. Nemade, A. Bedse, P. Bedse, R. Ranjan, H. Tare and M. Bedse, Int. J. Drug Deliv. Technol., 13, 966 (2023); https://doi.org/10.25258/ijddt.13.3.31
- S. Nayak, S.L. Gaonkar, E.A. Musad and A.M.A.L. Dawsar, J. Saudi Chem. Soc., 25, 101284 (2021); https://doi.org/10.1016/j.jscs.2021.101284
- Y. Ono, M. Ninomiya, D. Kaneko, A.D. Sonawane, T. Udagawa, K. Tanaka, A. Nishina and M. Koketsu, Bioorg. Chem., 104, 104245 (2020); https://doi.org/10.1016/j.bioorg.2020.104245
- A. Tiwari, N.G. Kutty, N. Kumar, A. Chaudhary, P.V. Raj, R. Shenoy, and C. Mallikarjuna Rao, Cytotechnology, 68, 2553 (2016); https://doi.org/10.1007/s10616-016-9979-9
- A. Daina, O. Michielin and V. Zoete, J. Chem. Inf. Model., 54, 3284 (2014); https://doi.org/10.1021/ci500467k
- G. Skoraczyñski, M. Kitlas, B. Miasojedow and A. Gambin, J. Cheminform., 15, 6 (2023); https://doi.org/10.1186/s13321-023-00678-z
- Y. Ono, M. Ninomiya, D. Kaneko, A.D. Sonawane, T. Udagawa, K. Tanaka, A. Nishina and M. Koketsu, Bioorg. Chem., 104, 104245 (2020); https://doi.org/10.1016/j.bioorg.2020.104245
- M. Soleiman-Beigi, R. Aryan, M. Yousofizadeh and S. Khosravi, J. Chem., 2013, 476358 (2013); https://doi.org/10.1155/2013/476358
- A.K. Nagariya, A.K. Meena, S. Kumar, R. Singh, A.K. Yadav and U.S. Niranjan, J. Pharm. Res., 3, 451 (2010).
- S. Rochlani, M. Bhatia, S. Rathod, P. Choudhari and R. Dhavale, Nat. Prod. Res., 38, 891 (2023); https://doi.org/10.1080/14786419.2023.2202398
- A. Drefahl, J. Cheminform., 3, 1 (2011); https://doi.org/10.1186/1758-2946-3-1
- S. Dallakyan and A.J. Olson, Methods Mol. Biol., 1263, 243 (2015); https://doi.org/10.1007/978-1-4939-2269-7_19
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
- S. Rathod, K. Shinde, J. Porlekar, P. Choudhari, R. Dhavale, D. Mahuli, Y. Tamboli, M. Bhatia, K.P. Haval, A.G. Al-Sehemi and M. Pannipara, ACS Omega, 8, 391 (2023); https://doi.org/10.1021/acsomega.2c04837
- A.J. Souers, J.D. Leverson, E.R. Boghaert, S.L. Ackler, N.D. Catron, J. Chen, B.D. Dayton, H. Ding, S.H. Enschede, W.J. Fairbrother, D.C.S. Huang, S.G. Hymowitz, S. Jin, S.L. Khaw, P.J. Kovar, L.T. Lam, J. Lee, H.L. Maecker, K.C. Marsh, K.D. Mason, M.J. Mitten, P.M. Nimmer, A. Oleksijew, C.H. Park, C.-M. Park, D.C. Phillips, A.W. Roberts, D. Sampath, J.F. Seymour, M.L. Smith, G.M. Sullivan, S.K. Tahir, C. Tse, M.D. Wendt, Y. Xiao, J.C. Xue, H. Zhang, R.A Humerickhouse, S.H. Rosenberg and S.W. Elmore, Nat. Med., 19, 202 (2013); https://doi.org/10.1038/nm.3048
- M. Wiederstein and M.J. Sippl, Nucleic Acids Res., 35(Web Server), W407 (2007); https://doi.org/10.1093/nar/gkm290
- M.J. Sippl, Proteins, 17, 355 (1993); https://doi.org/10.1002/prot.340170404
- R. Lüthy, J.U. Bowie and D. Eisenberg, Nature, 356, 83 (1992); https://doi.org/10.1038/356083a0
- A. Singh, R. Kaushik, A. Mishra, A. Shanker and B. Jayaram, Biochim. Biophys. Acta, Proteins Proteom., 1864, 11 (2016); https://doi.org/10.1016/j.bbapap.2015.10.004
- R. Gaikwad, S. Rathod and A. Shinde, Asian J. Pharm. Res., 12, 267 (2022); https://doi.org/10.52711/2231-5691.2022.00043
- S. Rathod, P. Chavan, D. Mahuli, S. Rochlani, S. Shinde, S. Pawar, P. Choudhari, R. Dhavale, P. Mudalkar and F. Tamboli, J. Mol. Model., 29, 113 (2023); https://doi.org/10.1007/s00894-023-05521-8
- V.K. Bagal, S.S. Rathod, M.M. Mulla, S.C. Pawar, P.B. Choudhari, V.T. Pawar and D.V. Mahuli, Nat. Prod. Res., 37, 4053 (2023); https://doi.org/10.1080/14786419.2023.2165076
- S. Forli, R. Huey, M.E. Pique, M.F. Sanner, D.S. Goodsell and A.J. Olson, Nat. Protoc., 11, 905 (2016); https://doi.org/10.1038/nprot.2016.051
- P. Banerjee, O.A. Eckert, A.K. Schrey and R. Preissner, Nucleic Acids Res., 46(W1), W257 (2018); https://doi.org/10.1093/nar/gky318
- P. Banerjee, F.O. Dehnbostel and R. Preissner, Front. Chem., 6, 362 (2018); https://doi.org/10.3389/fchem.2018.00362
- M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig and R. Preissner, Nucleic Acids Res., 42(Web Server), W53 (2014); https://doi.org/10.1093/nar/gku401
- R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
- R.A. Laskowski, J.A.C. Rullmann, M.W. MacArthur, R. Kaptein and J.M. Thornton, J. Biomol. NMR, 8, 477 (1996); https://doi.org/10.1007/BF00228148
- R.A. Laskowski, M.W. MacArthur and J.M. Thornton, in eds.: M.G. Rossmann and E. Arnold, PROCHECK: Validation of Protein Structure Coordinates, In: International Tables of Crystallography, Volume F. Crystallography of Biological Macromolecules, Dordrecht, Kluwer Academic Publishers, The Netherlands, pp. 722-725 (2001).
- A.L. Morris, M.W. MacArthur, E.G. Hutchinson and J.M. Thornton, Proteins, 12, 345 (1992); https://doi.org/10.1002/prot.340120407
- J.U. Bowie, R. Lüthy and D. Eisenberg, Science, 253, 164 (1991); https://doi.org/10.1126/science.1853201
- M. Wiederstein and M.J. Sippl, Nucleic Acids Res., 35(Suppl. 2), W407 (2007); https://doi.org/10.1093/nar/gkm290
- D.B. Kitchen, H. Decornez, J.R. Furr and J. Bajorath, Nat. Rev. Drug Discov., 3, 935 (2004); https://doi.org/10.1038/nrd1549
- R. Wang and S. Wang, J. Chem. Inf. Comput. Sci., 41, 1422 (2001); https://doi.org/10.1021/ci010025x
References
J.M. Adams and S. Cory, Oncogene, 26, 1324 (2007); https://doi.org/10.1038/sj.onc.1210220
R.J. Youle and A. Strasser, Nat. Rev. Mol. Cell Biol., 9, 47 (2008); https://doi.org/10.1038/nrm2308
D. Hanahan and R.A. Weinberg, Cell, 144, 646 (2011); https://doi.org/10.1016/j.cell.2011.02.013
R. Hamdy, S.A. Elseginy, N.I. Ziedan, M. El-Sadek, E. Lashin, A.T. Jones and A.D. Westwell, Int. J. Mol. Sci., 21, 8980 (2020); https://doi.org/10.3390/ijms21238980
A.R. Delbridge and A. Strasser, Cell Death Differ., 22, 1071 (2015); https://doi.org/10.1038/cdd.2015.50
S. Cory and J.M. Adams, Nat. Rev. Cancer, 2, 647 (2002); https://doi.org/10.1038/nrc883
F. Marra, A. Gastaldelli, G. Svegliati Baroni, G. Tell and C. Tiribelli, Trends Mol. Med., 14, 72 (2008); https://doi.org/10.1016/j.molmed.2007.12.003
T. Oltersdorf, S.W. Elmore, A.R. Shoemaker, R.C. Armstrong, D.J. Augeri, B.A. Belli, M. Bruncko, T.L. Deckwerth, J. Dinges, P.J. Hajduk, M.K. Joseph, S. Kitada, S.J. Korsmeyer, A.R. Kunzer, A. Letai, C. Li, M.J. Mitten, D.G. Nettesheim, S.C. Ng, P.M. Nimmer, J.M. O’Connor, A. Oleksijew, A.M. Petros, J.C. Reed, S.K. Tahir, C.B. Thompson, K.J. Tomaselli, W. Shen, B. Wang, M.D. Wendt, H. Zhang, S.W. Fesik and S.H. Rosenberg, Nature, 435, 677 (2005); https://doi.org/10.1038/nature03579
M. Vogler, Cell Death Differ., 19, 67 (2012); https://doi.org/10.1038/cdd.2011.158
J.C. Reed, Cell Death Differ., 13, 1378 (2006); https://doi.org/10.1038/sj.cdd.4401975
A. Das, M. Sarangi, K. Jangid, V. Kumar, A. Kumar, P.P. Singh, K. Kaur, V. Kumar, S. Chakraborty and V. Jaitak, J. Biomol. Struct. Dyn., (2024);https://doi.org/10.1080/07391102.2023.2256876
T.A. Yousef, A.G. Alhamzani, M.M. Abou-Krisha, G. Kanthimathi, M.S. Raghu, K.Y. Kumar, M.K. Prashanth and B.H. Jeon, Heliyon, 9, e13460 (2023); https://doi.org/10.1016/j.heliyon.2023.e13460
K. Patil, M. Nemade, A. Bedse, P. Bedse, R. Ranjan, H. Tare and M. Bedse, Int. J. Drug Deliv. Technol., 13, 966 (2023); https://doi.org/10.25258/ijddt.13.3.31
S. Nayak, S.L. Gaonkar, E.A. Musad and A.M.A.L. Dawsar, J. Saudi Chem. Soc., 25, 101284 (2021); https://doi.org/10.1016/j.jscs.2021.101284
Y. Ono, M. Ninomiya, D. Kaneko, A.D. Sonawane, T. Udagawa, K. Tanaka, A. Nishina and M. Koketsu, Bioorg. Chem., 104, 104245 (2020); https://doi.org/10.1016/j.bioorg.2020.104245
A. Tiwari, N.G. Kutty, N. Kumar, A. Chaudhary, P.V. Raj, R. Shenoy, and C. Mallikarjuna Rao, Cytotechnology, 68, 2553 (2016); https://doi.org/10.1007/s10616-016-9979-9
A. Daina, O. Michielin and V. Zoete, J. Chem. Inf. Model., 54, 3284 (2014); https://doi.org/10.1021/ci500467k
G. Skoraczyñski, M. Kitlas, B. Miasojedow and A. Gambin, J. Cheminform., 15, 6 (2023); https://doi.org/10.1186/s13321-023-00678-z
Y. Ono, M. Ninomiya, D. Kaneko, A.D. Sonawane, T. Udagawa, K. Tanaka, A. Nishina and M. Koketsu, Bioorg. Chem., 104, 104245 (2020); https://doi.org/10.1016/j.bioorg.2020.104245
M. Soleiman-Beigi, R. Aryan, M. Yousofizadeh and S. Khosravi, J. Chem., 2013, 476358 (2013); https://doi.org/10.1155/2013/476358
A.K. Nagariya, A.K. Meena, S. Kumar, R. Singh, A.K. Yadav and U.S. Niranjan, J. Pharm. Res., 3, 451 (2010).
S. Rochlani, M. Bhatia, S. Rathod, P. Choudhari and R. Dhavale, Nat. Prod. Res., 38, 891 (2023); https://doi.org/10.1080/14786419.2023.2202398
A. Drefahl, J. Cheminform., 3, 1 (2011); https://doi.org/10.1186/1758-2946-3-1
S. Dallakyan and A.J. Olson, Methods Mol. Biol., 1263, 243 (2015); https://doi.org/10.1007/978-1-4939-2269-7_19
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
S. Rathod, K. Shinde, J. Porlekar, P. Choudhari, R. Dhavale, D. Mahuli, Y. Tamboli, M. Bhatia, K.P. Haval, A.G. Al-Sehemi and M. Pannipara, ACS Omega, 8, 391 (2023); https://doi.org/10.1021/acsomega.2c04837
A.J. Souers, J.D. Leverson, E.R. Boghaert, S.L. Ackler, N.D. Catron, J. Chen, B.D. Dayton, H. Ding, S.H. Enschede, W.J. Fairbrother, D.C.S. Huang, S.G. Hymowitz, S. Jin, S.L. Khaw, P.J. Kovar, L.T. Lam, J. Lee, H.L. Maecker, K.C. Marsh, K.D. Mason, M.J. Mitten, P.M. Nimmer, A. Oleksijew, C.H. Park, C.-M. Park, D.C. Phillips, A.W. Roberts, D. Sampath, J.F. Seymour, M.L. Smith, G.M. Sullivan, S.K. Tahir, C. Tse, M.D. Wendt, Y. Xiao, J.C. Xue, H. Zhang, R.A Humerickhouse, S.H. Rosenberg and S.W. Elmore, Nat. Med., 19, 202 (2013); https://doi.org/10.1038/nm.3048
M. Wiederstein and M.J. Sippl, Nucleic Acids Res., 35(Web Server), W407 (2007); https://doi.org/10.1093/nar/gkm290
M.J. Sippl, Proteins, 17, 355 (1993); https://doi.org/10.1002/prot.340170404
R. Lüthy, J.U. Bowie and D. Eisenberg, Nature, 356, 83 (1992); https://doi.org/10.1038/356083a0
A. Singh, R. Kaushik, A. Mishra, A. Shanker and B. Jayaram, Biochim. Biophys. Acta, Proteins Proteom., 1864, 11 (2016); https://doi.org/10.1016/j.bbapap.2015.10.004
R. Gaikwad, S. Rathod and A. Shinde, Asian J. Pharm. Res., 12, 267 (2022); https://doi.org/10.52711/2231-5691.2022.00043
S. Rathod, P. Chavan, D. Mahuli, S. Rochlani, S. Shinde, S. Pawar, P. Choudhari, R. Dhavale, P. Mudalkar and F. Tamboli, J. Mol. Model., 29, 113 (2023); https://doi.org/10.1007/s00894-023-05521-8
V.K. Bagal, S.S. Rathod, M.M. Mulla, S.C. Pawar, P.B. Choudhari, V.T. Pawar and D.V. Mahuli, Nat. Prod. Res., 37, 4053 (2023); https://doi.org/10.1080/14786419.2023.2165076
S. Forli, R. Huey, M.E. Pique, M.F. Sanner, D.S. Goodsell and A.J. Olson, Nat. Protoc., 11, 905 (2016); https://doi.org/10.1038/nprot.2016.051
P. Banerjee, O.A. Eckert, A.K. Schrey and R. Preissner, Nucleic Acids Res., 46(W1), W257 (2018); https://doi.org/10.1093/nar/gky318
P. Banerjee, F.O. Dehnbostel and R. Preissner, Front. Chem., 6, 362 (2018); https://doi.org/10.3389/fchem.2018.00362
M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig and R. Preissner, Nucleic Acids Res., 42(Web Server), W53 (2014); https://doi.org/10.1093/nar/gku401
R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
R.A. Laskowski, J.A.C. Rullmann, M.W. MacArthur, R. Kaptein and J.M. Thornton, J. Biomol. NMR, 8, 477 (1996); https://doi.org/10.1007/BF00228148
R.A. Laskowski, M.W. MacArthur and J.M. Thornton, in eds.: M.G. Rossmann and E. Arnold, PROCHECK: Validation of Protein Structure Coordinates, In: International Tables of Crystallography, Volume F. Crystallography of Biological Macromolecules, Dordrecht, Kluwer Academic Publishers, The Netherlands, pp. 722-725 (2001).
A.L. Morris, M.W. MacArthur, E.G. Hutchinson and J.M. Thornton, Proteins, 12, 345 (1992); https://doi.org/10.1002/prot.340120407
J.U. Bowie, R. Lüthy and D. Eisenberg, Science, 253, 164 (1991); https://doi.org/10.1126/science.1853201
M. Wiederstein and M.J. Sippl, Nucleic Acids Res., 35(Suppl. 2), W407 (2007); https://doi.org/10.1093/nar/gkm290
D.B. Kitchen, H. Decornez, J.R. Furr and J. Bajorath, Nat. Rev. Drug Discov., 3, 935 (2004); https://doi.org/10.1038/nrd1549
R. Wang and S. Wang, J. Chem. Inf. Comput. Sci., 41, 1422 (2001); https://doi.org/10.1021/ci010025x