Copyright (c) 2024 Samira Safaraliyeva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Exploring Swelling Behaviour of Chitosan-Based Hydrogels in Diverse Environmental Conditions
Corresponding Author(s) : S. Safaraliyeva
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
Hydrogels, versatile materials with diverse applications in biomedicine and beyond, have garnered significant attention due to their unique properties. Among these, chitosan-based hydrogels have emerged as promising candidates owing to their biocompatibility, biodegradability, and antimicrobial properties. The hydrogels were synthesized through cross-linking of chitosan graft copolymers with N-vinylpyrrolidone and other vinyl monomers, as well as through thermal methods in situ. The impact of cross-linking agent concentration on gel fraction yield and cross-linking efficiency was examined. The results indicate that higher cross-linking densities lead to reduced swelling capacity as a result of a denser network structure. The swelling behaviour of chitosan-based hydrogels under various environmental conditions, including pH, temperature and ionic strength were also investigated. It is found that swelling behaviour varied among different hydrogel formulations, with natural and vinyl graft copolymers exhibiting increased swelling in acidic environments. Semi-synthetic copolymers containing hydrophobic groups showed relatively lower swelling across pH ranges. Additionally, swelling kinetics were studied, revealing equilibrium reached at different time intervals depending on temperature and hydrogel composition. Furthermore, the effect of glucose concentration on swelling behaviour was explored, demonstrating decreased swelling with increasing glucose concentration. Overall, this comprehensive investigation provides valuable insights into the swelling behaviour of chitosan-based hydrogels, essential for optimizing their performance in biomedical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Huang, E.A. Nauman and L.A. Stanciu, Mater. Sci. Eng. C, 99, 1048 (2019); https://doi.org/10.1016/j.msec.2019.02.055
- F.-L. Mi, S.-S. Shyu, Y.-M. Lin, Y.-B. Wu, C.-K. Peng and Y.-H. Tsai, Biomaterials, 24, 5023 (2003); https://doi.org/10.1016/S0142-9612(03)00413-7
- A. Harugade, A.P. Sherje and A. Pethe, React. Funct. Polym., 191, 105634 (2023); https://doi.org/10.1016/j.reactfunctpolym.2023.105634
- S. Saravanan, A. Chawla, M. Vairamani, T.P. Sastry, K.S. Subramanian and N. Selvamurugan, Int. J. Biol. Macromol., 104, 1975 (2017); https://doi.org/10.1016/j.ijbiomac.2017.01.034
- M.A. Stuart, W.T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov and S. Minko, Nat. Mater., 9, 101 (2010); https://doi.org/10.1038/nmat2614
- D.R. Rohindra, A.V. Nand and J.R. Khurma, South Pac. J. Nat. Appl. Sci., 22, 32 (2004); https://doi.org/10.1071/SP04005
- S. Tapdiqov, D. Taghiyev, N. Zeynalov, S. Safaraliyeva, S. Fatullayeva, A. Hummetov, M. Raucci, M. Mustafayev, R. Jafarova and K. Shirinova, React. Funct. Polym., 178, 105334 (2022); https://doi.org/10.1016/j.reactfunctpolym.2022.105334
- K. Sharma, Z.E. Porat and A. Gedanken, Polymers, 13, 4307 (2021); https://doi.org/10.3390/polym13244307
- H.M. El-Husseiny, E.A. Mady, L. Hamabe, A. Abugomaa, K. Shimada, T. Yoshida, T. Tanaka, A. Yokoi, M. Elbadawy and R. Tanaka, Mater. Today Bio, 13, 100186 (2022); https://doi.org/10.1016/j.mtbio.2021.100186
- B. Cheba, Procedia Manuf., 46, 652 (2020); https://doi.org/10.1016/j.promfg.2020.03.093
- W.M. Kedir, G.F. Abdi, M.M. Goro and L.D. Tolesa, Heliyon, 8, e10196 (2022); https://doi.org/10.1016/j.heliyon.2022.e10196
- G. Granata, S. Stracquadanio, M. Leonardi, E. Napoli, G. Malandrino, V. Cafiso, S. Stefani and C. Geraci, Molecules, 26, 4055 (2021); https://doi.org/10.3390/molecules26134055
- A. Srivastava, D.K. Mishra and K. Behari, Carbohydr. Polym., 80, 790 (2010); https://doi.org/10.1016/j.carbpol.2009.12.031
- S.Z. Tapdiqov, Cellul. Chem. Technol., 54, 429 (2020); https://doi.org/10.35812/CelluloseChemTechnol.2020.54.44
- O. Germershaus, T. Lühmann, J.C. Rybak, J. Ritzer and L. Meinel, Int. Mater. Rev., 60, 101 (2015); https://doi.org/10.1179/1743280414Y.0000000045
- A. Mignon, N. De Belie, P. Dubruel and S. Van Vlierberghe, Eur. Polym. J., 117, 165 (2019); https://doi.org/10.1016/j.eurpolymj.2019.04.054
- S. Chen, M. Liu, S. Jin and Y. Chen, J. Appl. Polym. Sci., 98, 1720 (2005); https://doi.org/10.1002/app.22348
- H. Chen and Y. Yao, J. Biomater. Appl., 36, 945 (2022); https://doi.org/10.1177/08853282211035236
- E. Budianto, S.P. Muthoharoh and N.M. Nizardo, Asian J. Appl. Sci., 3, (2015).
- G. Sun, X.Z. Zhang and C.C. Chu, J. Mater. Sci. Mater. Med., 18, 1563 (2007); https://doi.org/10.1007/s10856-007-3030-9
- F.M. Goycoolea, M.E. FernándezValle, I. Aranaz and A. Heras, Macromol. Chem. Phys., 212, 887 (2011); https://doi.org/10.1002/macp.201000301
- F.O. Abreu, C. Bianchini, M.M. Forte and T.B. Kist, Carbohydr. Polym., 74, 283 (2008); https://doi.org/10.1016/j.carbpol.2008.02.017
- M. Timur and A. Pasa, ACS Omega, 3, 17416 (2018); https://doi.org/10.1021/acsomega.8b01872
- A. Martinez-Ruvalcaba, J.C. Sanchez-Diaz, F. Becerra, L.E. Cruz-Barba and A. Gonzalez-Alvarez, Express Polym. Lett., 3, 25 (2009); https://doi.org/10.3144/expresspolymlett.2009.5
- Y.L. Guan, L. Shao and K. De Yao, J. Appl. Polym. Sci., 61, 2325 (1996); https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2325:: AID-APP11>3.0.CO;2-3
- T. Elshaarani, H. Yu, L. Wang, J. Feng, C. Li, W. Zhou, A. Khan, M. Usman, B.U. Amin and R. Khan, Int. J. Biol. Macromol., 161, 109 (2020); https://doi.org/10.1016/j.ijbiomac.2020.06.012
- M.A. Abureesh, A.A. Oladipo and M. Gazi, Int. J. Biol. Macromol., 90, 75 (2016); https://doi.org/10.1016/j.ijbiomac.2015.10.001
References
S.M. Huang, E.A. Nauman and L.A. Stanciu, Mater. Sci. Eng. C, 99, 1048 (2019); https://doi.org/10.1016/j.msec.2019.02.055
F.-L. Mi, S.-S. Shyu, Y.-M. Lin, Y.-B. Wu, C.-K. Peng and Y.-H. Tsai, Biomaterials, 24, 5023 (2003); https://doi.org/10.1016/S0142-9612(03)00413-7
A. Harugade, A.P. Sherje and A. Pethe, React. Funct. Polym., 191, 105634 (2023); https://doi.org/10.1016/j.reactfunctpolym.2023.105634
S. Saravanan, A. Chawla, M. Vairamani, T.P. Sastry, K.S. Subramanian and N. Selvamurugan, Int. J. Biol. Macromol., 104, 1975 (2017); https://doi.org/10.1016/j.ijbiomac.2017.01.034
M.A. Stuart, W.T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov and S. Minko, Nat. Mater., 9, 101 (2010); https://doi.org/10.1038/nmat2614
D.R. Rohindra, A.V. Nand and J.R. Khurma, South Pac. J. Nat. Appl. Sci., 22, 32 (2004); https://doi.org/10.1071/SP04005
S. Tapdiqov, D. Taghiyev, N. Zeynalov, S. Safaraliyeva, S. Fatullayeva, A. Hummetov, M. Raucci, M. Mustafayev, R. Jafarova and K. Shirinova, React. Funct. Polym., 178, 105334 (2022); https://doi.org/10.1016/j.reactfunctpolym.2022.105334
K. Sharma, Z.E. Porat and A. Gedanken, Polymers, 13, 4307 (2021); https://doi.org/10.3390/polym13244307
H.M. El-Husseiny, E.A. Mady, L. Hamabe, A. Abugomaa, K. Shimada, T. Yoshida, T. Tanaka, A. Yokoi, M. Elbadawy and R. Tanaka, Mater. Today Bio, 13, 100186 (2022); https://doi.org/10.1016/j.mtbio.2021.100186
B. Cheba, Procedia Manuf., 46, 652 (2020); https://doi.org/10.1016/j.promfg.2020.03.093
W.M. Kedir, G.F. Abdi, M.M. Goro and L.D. Tolesa, Heliyon, 8, e10196 (2022); https://doi.org/10.1016/j.heliyon.2022.e10196
G. Granata, S. Stracquadanio, M. Leonardi, E. Napoli, G. Malandrino, V. Cafiso, S. Stefani and C. Geraci, Molecules, 26, 4055 (2021); https://doi.org/10.3390/molecules26134055
A. Srivastava, D.K. Mishra and K. Behari, Carbohydr. Polym., 80, 790 (2010); https://doi.org/10.1016/j.carbpol.2009.12.031
S.Z. Tapdiqov, Cellul. Chem. Technol., 54, 429 (2020); https://doi.org/10.35812/CelluloseChemTechnol.2020.54.44
O. Germershaus, T. Lühmann, J.C. Rybak, J. Ritzer and L. Meinel, Int. Mater. Rev., 60, 101 (2015); https://doi.org/10.1179/1743280414Y.0000000045
A. Mignon, N. De Belie, P. Dubruel and S. Van Vlierberghe, Eur. Polym. J., 117, 165 (2019); https://doi.org/10.1016/j.eurpolymj.2019.04.054
S. Chen, M. Liu, S. Jin and Y. Chen, J. Appl. Polym. Sci., 98, 1720 (2005); https://doi.org/10.1002/app.22348
H. Chen and Y. Yao, J. Biomater. Appl., 36, 945 (2022); https://doi.org/10.1177/08853282211035236
E. Budianto, S.P. Muthoharoh and N.M. Nizardo, Asian J. Appl. Sci., 3, (2015).
G. Sun, X.Z. Zhang and C.C. Chu, J. Mater. Sci. Mater. Med., 18, 1563 (2007); https://doi.org/10.1007/s10856-007-3030-9
F.M. Goycoolea, M.E. FernándezValle, I. Aranaz and A. Heras, Macromol. Chem. Phys., 212, 887 (2011); https://doi.org/10.1002/macp.201000301
F.O. Abreu, C. Bianchini, M.M. Forte and T.B. Kist, Carbohydr. Polym., 74, 283 (2008); https://doi.org/10.1016/j.carbpol.2008.02.017
M. Timur and A. Pasa, ACS Omega, 3, 17416 (2018); https://doi.org/10.1021/acsomega.8b01872
A. Martinez-Ruvalcaba, J.C. Sanchez-Diaz, F. Becerra, L.E. Cruz-Barba and A. Gonzalez-Alvarez, Express Polym. Lett., 3, 25 (2009); https://doi.org/10.3144/expresspolymlett.2009.5
Y.L. Guan, L. Shao and K. De Yao, J. Appl. Polym. Sci., 61, 2325 (1996); https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2325:: AID-APP11>3.0.CO;2-3
T. Elshaarani, H. Yu, L. Wang, J. Feng, C. Li, W. Zhou, A. Khan, M. Usman, B.U. Amin and R. Khan, Int. J. Biol. Macromol., 161, 109 (2020); https://doi.org/10.1016/j.ijbiomac.2020.06.012
M.A. Abureesh, A.A. Oladipo and M. Gazi, Int. J. Biol. Macromol., 90, 75 (2016); https://doi.org/10.1016/j.ijbiomac.2015.10.001