Copyright (c) 2024 V Jaisankar V
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Facile Solution Phase Synthesis of Peptide Assemblies as Functional Moiety for Antimicrobial and Anticancer Peptides
Corresponding Author(s) : V. Jaisankar
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
In recent years, human being are affected by various types of cancer and are highly microbial infected due to changes in environmental conditions and hence, the recovery from this cause of disease using peptide-based drugs as a function of both activities like antimicrobial peptides (AMPs) and anticancer peptides (ACPs). Herein, we report the solution phase peptide synthesis using α-amino acids such as alanine, phenylalanine and lysine. The structural parameters of the polypeptides were investigated by circular dichroism, FT-IR, MALDI-TOF ESI-mass, NMR, etc. Water-soluble hydrophilic-based synthesized polypeptides possess various biological applications throughout, especially antibacterial and anticancer activities–short reaction process, less cost of chemicals, minimum glassware and no hazardous chemicals involved. Multiple species have innate immune systems that contain antimicrobial peptides (AMPs). Most of them have been proved to possess dual action, both as antibacterial and anticancer peptides, making them most promising alternative to conventional compounds used today to treat these infections. Present approach offers unique opportunities for developing highly potent and focused antibacterial and anticancer peptide-based drugs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Obeid and C. Scholz, Biomacromolecules, 12, 3797 (2011); https://doi.org/10.1021/bm201048x
- L.A. Carpino, S. Ghassemi, D. Ionescu, M. Ismail, D. Sadat-Aalaee, G.A. Truran, E.M.E. Mansour, G.A. Siwruk, J.S. Eynon and B. Morgan, J. Am. Chem. Soc., 7, 28 (2003); https://doi.org/10.1021/op0202179
- T. Lescrinier, C. Hendrix, L. Kerremans, J. Rozenski, A. Link, B. Samyn, A. Van Aerschot, E. Lescrinier, R. Eritja, J. Van Beeumen and P. Herdewijn Chem. Eur. J., 4, 425 (1998); https://doi.org/10.1002/(SICI)1521-3765(19980310)4:3<425::AID-CHEM425>3.0.CO;2-W
- M. Murariu, E. Stela Dragan, A. Adochitei, G. Zbancioc and G. Drochioiu, Romanian J. Chem., 56, 783 (2011); https://doi.org/10.1002/psc.1359
- W. Vayaboury, O. Giani, H. Cottet, A. Deratani and F. Schué, Macromol. Rapid Commun., 25, 1221 (2004); https://doi.org/10.1002/marc.200400111
- L.A. Slotin, D.R. Lauren and R.E. Williams, Can. J. Chem., 55, 4257 (1977); https://doi.org/10.1139/v77-603
- L.M. Yin, M.A. Edwards, J. Li, C.M. Yip and C.M. Deber, J. Biol. Chem., 287, 7738 (2012); https://doi.org/10.1074/jbc.M111.303602
- B.R. Singh, D.B. DeOliveira, F.-N. Fu, M.P. Fuller, Bimol. Spectrosc., 1890, 47 (1993); https://doi.org/10.1117/12.145242
- A.H. Shivarudrappa and G. Ponesakki, J. Cell Commun. Signal., 14, 207 (2020); https://doi.org/10.1007/s12079-019-00539-1
- S.S. Gopal, S.M. Eligar, B. Vallikannan and G. Ponesakki, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1866, 158812 (2021); https://doi.org/10.1016/j.bbalip.2020.158812
- W. Pirovano Heringa, J. Methods Mol. Biol., 327, 609 (2010); https://doi.org/10.1007/978-1-60327 -241-4-19
- S.A. Trauger,W. Webb and G. Siuzdak, J. Spectrosc., 16, 15 (2002); https://doi.org/10.1155/2002/320152
- R.B. Cole, Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation & Applications, Wiley: New York, p. 76 (1997).
- J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong and C.M. Whitehouse, Science, 246, 64 (1989); https://doi.org/10.1126/science.2675315
- O.N. Jensen, A. Podtelejnikov and M. Mann, Rapid Commun. Mass Spectrom., 10, 1371 (1996); https://doi.org/10.1002/(SICI)1097-0231(199608)10:11<1371::AID-RCM682>3.0.CO;2-5
- K. Wüthrich, J. Biol. Chem., 265, 22059 (1990); https://doi.org/10.1016/S0021-9258(18)45665-7
- Q.-Y. Zhang, Z.-B. Yan, Y.-M. Meng, X.-Y. Hong, G. Shao, J.-J. Ma, X.-R. Cheng, J. Liu, J. Kang and C.-Y. Fu, Mil. Med. Res., 8, 48 (2021); https://doi.org/10.1186/s40779-021-00343-2
- S. Thennarasu and R. Nagaraj, Int. J. Pept. Protein Res., 46, 480 (1995); https://doi.org/10.1111/j.1399-3011.1995.tb01603.x
- A. Lath, A.R. Santal, N. Kaur, P. Kumari and N.P. Singh, Biotechnol. Genet. Eng. Rev., 39, 45 (2022); https://doi.org/10.1080/02648725.2022.2082157
- V. Manikandan, P. Velmurugan, J.H. Park, W.S. Chang, Y.J. Park and P. Jayanthi, Biotech, 7, 72 (2017); https://doi.org/10.1007/s13205-017-0670-4
- R.J. Boohaker, Curr. Med. Chem., 19, 3794 (2012); https://doi.org/10.2174/092986712801661004
References
R. Obeid and C. Scholz, Biomacromolecules, 12, 3797 (2011); https://doi.org/10.1021/bm201048x
L.A. Carpino, S. Ghassemi, D. Ionescu, M. Ismail, D. Sadat-Aalaee, G.A. Truran, E.M.E. Mansour, G.A. Siwruk, J.S. Eynon and B. Morgan, J. Am. Chem. Soc., 7, 28 (2003); https://doi.org/10.1021/op0202179
T. Lescrinier, C. Hendrix, L. Kerremans, J. Rozenski, A. Link, B. Samyn, A. Van Aerschot, E. Lescrinier, R. Eritja, J. Van Beeumen and P. Herdewijn Chem. Eur. J., 4, 425 (1998); https://doi.org/10.1002/(SICI)1521-3765(19980310)4:3<425::AID-CHEM425>3.0.CO;2-W
M. Murariu, E. Stela Dragan, A. Adochitei, G. Zbancioc and G. Drochioiu, Romanian J. Chem., 56, 783 (2011); https://doi.org/10.1002/psc.1359
W. Vayaboury, O. Giani, H. Cottet, A. Deratani and F. Schué, Macromol. Rapid Commun., 25, 1221 (2004); https://doi.org/10.1002/marc.200400111
L.A. Slotin, D.R. Lauren and R.E. Williams, Can. J. Chem., 55, 4257 (1977); https://doi.org/10.1139/v77-603
L.M. Yin, M.A. Edwards, J. Li, C.M. Yip and C.M. Deber, J. Biol. Chem., 287, 7738 (2012); https://doi.org/10.1074/jbc.M111.303602
B.R. Singh, D.B. DeOliveira, F.-N. Fu, M.P. Fuller, Bimol. Spectrosc., 1890, 47 (1993); https://doi.org/10.1117/12.145242
A.H. Shivarudrappa and G. Ponesakki, J. Cell Commun. Signal., 14, 207 (2020); https://doi.org/10.1007/s12079-019-00539-1
S.S. Gopal, S.M. Eligar, B. Vallikannan and G. Ponesakki, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1866, 158812 (2021); https://doi.org/10.1016/j.bbalip.2020.158812
W. Pirovano Heringa, J. Methods Mol. Biol., 327, 609 (2010); https://doi.org/10.1007/978-1-60327 -241-4-19
S.A. Trauger,W. Webb and G. Siuzdak, J. Spectrosc., 16, 15 (2002); https://doi.org/10.1155/2002/320152
R.B. Cole, Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation & Applications, Wiley: New York, p. 76 (1997).
J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong and C.M. Whitehouse, Science, 246, 64 (1989); https://doi.org/10.1126/science.2675315
O.N. Jensen, A. Podtelejnikov and M. Mann, Rapid Commun. Mass Spectrom., 10, 1371 (1996); https://doi.org/10.1002/(SICI)1097-0231(199608)10:11<1371::AID-RCM682>3.0.CO;2-5
K. Wüthrich, J. Biol. Chem., 265, 22059 (1990); https://doi.org/10.1016/S0021-9258(18)45665-7
Q.-Y. Zhang, Z.-B. Yan, Y.-M. Meng, X.-Y. Hong, G. Shao, J.-J. Ma, X.-R. Cheng, J. Liu, J. Kang and C.-Y. Fu, Mil. Med. Res., 8, 48 (2021); https://doi.org/10.1186/s40779-021-00343-2
S. Thennarasu and R. Nagaraj, Int. J. Pept. Protein Res., 46, 480 (1995); https://doi.org/10.1111/j.1399-3011.1995.tb01603.x
A. Lath, A.R. Santal, N. Kaur, P. Kumari and N.P. Singh, Biotechnol. Genet. Eng. Rev., 39, 45 (2022); https://doi.org/10.1080/02648725.2022.2082157
V. Manikandan, P. Velmurugan, J.H. Park, W.S. Chang, Y.J. Park and P. Jayanthi, Biotech, 7, 72 (2017); https://doi.org/10.1007/s13205-017-0670-4
R.J. Boohaker, Curr. Med. Chem., 19, 3794 (2012); https://doi.org/10.2174/092986712801661004