Copyright (c) 2023 P. Kaviyarasi , S. Manivannan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Anticancer and Antioxidant Activities of Biologically Active Newly Synthesized α-Amino Acid-Dithiocarbamate Complexes of Some Bivalent Metals
Corresponding Author(s) : P. Kaviyarasi
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
The present study focuses on the synthesis and characterization of L-proline dithiocarbamate and its L-prodtc metal(II) (M = Ni2+, Cu2+ and Se2+) complexes. The ligand was synthesized in the presence of an alkali through the reaction of one mole of carbon disulphide and L-proline in ethanol under ice cold condition. The solubility of this ligand in the media is attributed to its high hygroscopic character and therefore, its metal(II) complexes were synthesized using a freshly prepared ligand. The characterization of the metal(II) complexes were carried out by molar conductance, magnetic susceptibility, elemental analysis, TGA/DTA, mass, IR, Raman, UV-Visible, 1H and 13C NMR spectroscopic studies. The biological activity of all the metal(II) complexes has been examined using an inhibition method for bacteria and pathogenic fungus, which will assess their possible antibacterial, antioxidant, anticancer activities and anti-inflammatory. It has been observed that Se(L-Prodtc)2 exhibits anticancer activity against breast cancer cells (MCF7) and also observed that antioxidant activity of Se(L-Prodtc)2 is more as compared to standard BHT, whereas Cu(L-Prodtc)2 complex shows appreciable anti-inflammatory activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.O. Ajiboye, T.T. Ajiboye, R. Marzouki and D.C. Onwudiwe, Int. J. Mol. Sci., 23, 1317 (2022); https://doi.org/10.3390/ijms23031317
- P. Kaviyarasi and S. Manivannan, Indian J. Chem. Technol., 28, 624 (2021).
- S.W. Lai, M.G.B. Drew and P.D. Beer, J. Organomet. Chem., 637-639, 89 (2001); https://doi.org/10.1016/S0022-328X(01)00972-X
- M. Castillo, J.J. Criado, B. Macias and M.V. Vaquero, Transition Met. Chem., 11, 476 (1986); https://doi.org/10.1007/BF01386881
- B. Macias, P. Malet, R. Paradinas, V. Rives and M.V. Villa, Inorg. Chim. Acta, 288, 127 (1999); https://doi.org/10.1016/S0020-1693(99)00046-8
- T. Sedaghat and K. Goodarzi, Main Group Chem., 4, 121 (2005); https://doi.org/10.1080/10241220500271244
- N. Geetha and S. Thirumaran, J. Serb. Chem. Soc., 73, 169 (2008); https://doi.org/10.2298/JSC0802169G
- A.T. Odularu and P.A. Ajibade, Bioorg. Chem. Appl., 2019, 8260496 (2019); https://doi.org/10.1155/2019/8260496
- S. Kane, P. Lazo, F. Ylli, T. Stafilov, F. Qarri and E. Marku, J. Environ. Sci. Health Part A, 51, 335 (2016); https://doi.org/10.1080/10934529.2015.1109408
- S.M. Lee and E.R.T. Tiekink, Inorganics, 9, 7 (2021); https://doi.org/10.3390/inorganics9010007
- T.A. Saiyed, J.O. Adeyemi and D.C. Onwudiw, Open Chem., 19, 974-986 (2021); https://doi.org/10.1515/chem-2021-0080
- G. Aravamudhan, Chhaya Janakiram and B.G. Sejekan, Phosphours Sulfur Rel. Elements, 5, 185 (1978); https://doi.org/10.1080/03086647808069883
- R. Irfandi, S. Santi, I. Raya, A. Ahmad, A. Fudholi, D.R.T. Sari and Prihantono, J. Mol. Struct., 1252, 132101 (2022); https://doi.org/10.1016/j.molstruc.2021.132101
- CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, USA (2012).
- Sk.I. Islam, S.B. Das, S. Chakrabarty, S. Hazra, A. Pandey and A. Patra, Adv. Chem., 2016, 4676524 (2016); https://doi.org/10.1155/2016/4676524
- S.A. Khan, W. Ahmad, K.S. Munavar abd S. Kanwal, Indian J. Pharm. Sci., 80, 480 (2018); https://doi.org/10.4172/pharmaceutical-sciences.1000381
- D. Kovala-Demertzi, J. Inorg. Biochem., 79, 153 (2000); https://doi.org/10.1016/S0162-0134(99)00175-0
- S. Ramos-Inza, D. Plano and C. Sanmartin, Eur. J. Med. Chem., 244, 114834 (2022); https://doi.org/10.1016/j.ejmech.2022.114834
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds; Edn. 4, John Wiley: New York, pp. 233-240 (1986).
- W. Schnabel, Phosphorus and Sulphur, 13, 345 (1982).
- R. Cao, A. Diaz-Garcia, R. Moya and L.G. Perez, Rev. Soc. Quím. Méx., 44, 158 (2000).
- L.V. Kumar and G.R. Nath, Orient. J. Chem., 34, 3064 (2018); https://doi.org/10.13005/ojc/340649
- O. Siiman, Inorg. Chem., 19, 2889 (1980); https://doi.org/10.1021/ic50212a008
- R. Laitinen, I. Persson, S. Larsen, E. Pedersen and L. Niinistö, Acta Chem. Scand., 41, 361 (1987); https://doi.org/10.3891/acta.chem.scand.41a-0361
- A. Nqombolo and A. Peter, Ajibade, J. Chem., 2016, 1293790 (2016); https://doi.org/10.1155/2016/1293790
- A.C. Ekennia, D.C. Onwudiwe and A.A. Osowole, J. Sulfur Chem., 36, 96 (2015); https://doi.org/10.1080/17415993.2014.969731
- S. Hooda, R. Kumar and M. Kaur, Indian J. Chem., 43A, 527 (2004).
- P.A. Antunes, S.T. Breviglieri, G.O. Chierice and E.T. Cavalheiro, J. Braz. Chem. Soc., 12, 4 (2001); https://doi.org/10.1590/S0103-50532001000400005
- H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1978); https://doi.org/10.1021/ic50201a062
- M.R. Maurya and N. Singh, Indian J. Chem., 43A, 542 (2004).
- S.K. Sengupta and S. Kumar, Thermochim. Acta, 72, 349 (1984); https://doi.org/10.1016/0040-6031(84)85093-5
- Y.S. Tan, C.I. Yeo, E.R.T. Tiekink and P.J. Heard, Inorganics, 9, 60 (2021); https://doi.org/10.3390/inorganics9080060
- V.K. Maurya, A.K. Singh, R.P. Singh, S. Yadav, K. Kumar, P. Prakash and L.B. Prasad, J. Coord. Chem., 72, 3338 (2019); https://doi.org/10.1080/00958972.2019.1693041
- DC. Onwudiwe and P.A. Ajibade, Int. J. Mol. Sci., 13, 9502 (2012); https://doi.org/10.3390/ijms13089502
- Y. Alghamdi, Mater. Sci. Appl., 8, 726 (2017); https://doi.org/10.4236/msa.2017.810052
- S.M. El-Megharbel, M.S. Refat, F.A. Al-Salmi and R.Z. Hamza, Int. J. Environ. Res. Public Health, 18, 8030 (2021); https://doi.org/10.3390/ijerph18158030
- G. Hogarth, Transition Metal Dithiocarbamates: 1978-2003 Progress in Inorganic Chemistry, John Wiley & Sons, Inc. (2005).
- A.K. Sharma, Thermochim. Acta, 104, 339 (1986); https://doi.org/10.1016/0040-6031(86)85208-X
- Z.H. Chohan, M.S. Iqbal, H.S. Iqbal, A. Scozzafava and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 17, 87 (2002); https://doi.org/10.1080/14756360290030734
- K.J. Wrobel, R. Power and M. Toborek, IUBMB Life, 68, 97 (2016); https://doi.org/10.1002/iub.1466
- A.M. Paca, P.A. Ajibade, F.P. Andrew, N. Nundkumar and M. Singh, Arab. J. Chem., 14, 103326 (2021); https://doi.org/10.1016/j.arabjc.2021.103326
References
T.O. Ajiboye, T.T. Ajiboye, R. Marzouki and D.C. Onwudiwe, Int. J. Mol. Sci., 23, 1317 (2022); https://doi.org/10.3390/ijms23031317
P. Kaviyarasi and S. Manivannan, Indian J. Chem. Technol., 28, 624 (2021).
S.W. Lai, M.G.B. Drew and P.D. Beer, J. Organomet. Chem., 637-639, 89 (2001); https://doi.org/10.1016/S0022-328X(01)00972-X
M. Castillo, J.J. Criado, B. Macias and M.V. Vaquero, Transition Met. Chem., 11, 476 (1986); https://doi.org/10.1007/BF01386881
B. Macias, P. Malet, R. Paradinas, V. Rives and M.V. Villa, Inorg. Chim. Acta, 288, 127 (1999); https://doi.org/10.1016/S0020-1693(99)00046-8
T. Sedaghat and K. Goodarzi, Main Group Chem., 4, 121 (2005); https://doi.org/10.1080/10241220500271244
N. Geetha and S. Thirumaran, J. Serb. Chem. Soc., 73, 169 (2008); https://doi.org/10.2298/JSC0802169G
A.T. Odularu and P.A. Ajibade, Bioorg. Chem. Appl., 2019, 8260496 (2019); https://doi.org/10.1155/2019/8260496
S. Kane, P. Lazo, F. Ylli, T. Stafilov, F. Qarri and E. Marku, J. Environ. Sci. Health Part A, 51, 335 (2016); https://doi.org/10.1080/10934529.2015.1109408
S.M. Lee and E.R.T. Tiekink, Inorganics, 9, 7 (2021); https://doi.org/10.3390/inorganics9010007
T.A. Saiyed, J.O. Adeyemi and D.C. Onwudiw, Open Chem., 19, 974-986 (2021); https://doi.org/10.1515/chem-2021-0080
G. Aravamudhan, Chhaya Janakiram and B.G. Sejekan, Phosphours Sulfur Rel. Elements, 5, 185 (1978); https://doi.org/10.1080/03086647808069883
R. Irfandi, S. Santi, I. Raya, A. Ahmad, A. Fudholi, D.R.T. Sari and Prihantono, J. Mol. Struct., 1252, 132101 (2022); https://doi.org/10.1016/j.molstruc.2021.132101
CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, USA (2012).
Sk.I. Islam, S.B. Das, S. Chakrabarty, S. Hazra, A. Pandey and A. Patra, Adv. Chem., 2016, 4676524 (2016); https://doi.org/10.1155/2016/4676524
S.A. Khan, W. Ahmad, K.S. Munavar abd S. Kanwal, Indian J. Pharm. Sci., 80, 480 (2018); https://doi.org/10.4172/pharmaceutical-sciences.1000381
D. Kovala-Demertzi, J. Inorg. Biochem., 79, 153 (2000); https://doi.org/10.1016/S0162-0134(99)00175-0
S. Ramos-Inza, D. Plano and C. Sanmartin, Eur. J. Med. Chem., 244, 114834 (2022); https://doi.org/10.1016/j.ejmech.2022.114834
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds; Edn. 4, John Wiley: New York, pp. 233-240 (1986).
W. Schnabel, Phosphorus and Sulphur, 13, 345 (1982).
R. Cao, A. Diaz-Garcia, R. Moya and L.G. Perez, Rev. Soc. Quím. Méx., 44, 158 (2000).
L.V. Kumar and G.R. Nath, Orient. J. Chem., 34, 3064 (2018); https://doi.org/10.13005/ojc/340649
O. Siiman, Inorg. Chem., 19, 2889 (1980); https://doi.org/10.1021/ic50212a008
R. Laitinen, I. Persson, S. Larsen, E. Pedersen and L. Niinistö, Acta Chem. Scand., 41, 361 (1987); https://doi.org/10.3891/acta.chem.scand.41a-0361
A. Nqombolo and A. Peter, Ajibade, J. Chem., 2016, 1293790 (2016); https://doi.org/10.1155/2016/1293790
A.C. Ekennia, D.C. Onwudiwe and A.A. Osowole, J. Sulfur Chem., 36, 96 (2015); https://doi.org/10.1080/17415993.2014.969731
S. Hooda, R. Kumar and M. Kaur, Indian J. Chem., 43A, 527 (2004).
P.A. Antunes, S.T. Breviglieri, G.O. Chierice and E.T. Cavalheiro, J. Braz. Chem. Soc., 12, 4 (2001); https://doi.org/10.1590/S0103-50532001000400005
H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1978); https://doi.org/10.1021/ic50201a062
M.R. Maurya and N. Singh, Indian J. Chem., 43A, 542 (2004).
S.K. Sengupta and S. Kumar, Thermochim. Acta, 72, 349 (1984); https://doi.org/10.1016/0040-6031(84)85093-5
Y.S. Tan, C.I. Yeo, E.R.T. Tiekink and P.J. Heard, Inorganics, 9, 60 (2021); https://doi.org/10.3390/inorganics9080060
V.K. Maurya, A.K. Singh, R.P. Singh, S. Yadav, K. Kumar, P. Prakash and L.B. Prasad, J. Coord. Chem., 72, 3338 (2019); https://doi.org/10.1080/00958972.2019.1693041
DC. Onwudiwe and P.A. Ajibade, Int. J. Mol. Sci., 13, 9502 (2012); https://doi.org/10.3390/ijms13089502
Y. Alghamdi, Mater. Sci. Appl., 8, 726 (2017); https://doi.org/10.4236/msa.2017.810052
S.M. El-Megharbel, M.S. Refat, F.A. Al-Salmi and R.Z. Hamza, Int. J. Environ. Res. Public Health, 18, 8030 (2021); https://doi.org/10.3390/ijerph18158030
G. Hogarth, Transition Metal Dithiocarbamates: 1978-2003 Progress in Inorganic Chemistry, John Wiley & Sons, Inc. (2005).
A.K. Sharma, Thermochim. Acta, 104, 339 (1986); https://doi.org/10.1016/0040-6031(86)85208-X
Z.H. Chohan, M.S. Iqbal, H.S. Iqbal, A. Scozzafava and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 17, 87 (2002); https://doi.org/10.1080/14756360290030734
K.J. Wrobel, R. Power and M. Toborek, IUBMB Life, 68, 97 (2016); https://doi.org/10.1002/iub.1466
A.M. Paca, P.A. Ajibade, F.P. Andrew, N. Nundkumar and M. Singh, Arab. J. Chem., 14, 103326 (2021); https://doi.org/10.1016/j.arabjc.2021.103326