Copyright (c) 2024 Dr. Sanjeev Kumar Sam, Arshdeep Kaur, Dr. Harpreet Kaur, Dr. Prit Pal Singh, Dr. Khalid Mujasam Batoo, Jyoti Gaur, Supreet
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Hybrid Synthesis Approach: Tailoring Photocatalytic Activity of Co3O4 Nanoparticles by PEG Functionalization
Corresponding Author(s) : Sanjeev Kumar
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
This study presents a novel fusion of precipitation and hydrothermal methods for the synthesis of polyethylene glycol (PEG)-functionalized cobalt oxide (Co3O4) nanoparticles. The synthesized PEG/Co3O4 nanoparticles characterized using various techniques to elucidate their structure, composition, properties and application. The XRD analysis confirmed the formation of cubic phase of Co3O4 with a crystallite size of 2.04 nm. Two direct bandgap (Eg) transitions were observed at energy levels of 1.68 and 2.5 eV, exhibiting intensities that exceeded those reported in prior studies. The synthesized nanoparticles exhibited distinct structural features as revealed by FESEM and HRTEM investigations. Furthermore, the FTIR analysis provided evidence of interactions between PEG and Co3O4, suggesting successful functionalization. The high crystallinity of the PEG-mediated Co3O4 nanoparticles was further confirmed by the selected area electron diffraction (SAED) pattern. The XPS analysis revealed the presence of Co2+ and Co3+ ions, along with defect sites, confirming the successful synthesis of Co3O4 NPs with controlled oxidation states. These findings offer valuable insights into the chemical composition and electronic structure of the synthesized PEG-mediated Co3O4 nanoparticles. The photocatalytic activity of the PEG/Co3O4 nanoparticles was evaluated through the degradation of Congo red dye, a typical azo dye pollutant. The study revealed that PEG/Co3O4 (dose 200 mg L-1) acted as an efficient photocatalyst for Congo red degradation. These results suggest that PEG-mediated Co3O4 nanoparticles hold promising potential as efficient photocatalysts for the treatment of wastewater containing organic contaminants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Liu, Pollution and Treatment of Dye Waste-Water, IOP Conf. Ser. Earth Environ. Sci., 514, 052001 (2020); https://doi.org/10.1088/1755-1315/514/5/052001
- D.A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193 (2019); https://doi.org/10.1007/s13762-018-2130-z
- L. He, F. Michailidou, H.L. Gahlon and W. Zeng, Chem. Res. Toxicol.. 35, 901 (2022); https://doi.org/10.1021/acs.chemrestox.1c00427
- B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
- C.V. Nachiyar, A.D. Rakshi, S. Sandhya, N.B.D. Jebasta and J. Nellore, Case Stud. Chem. Environ. Eng., 7, 100339 (2023); https://doi.org/10.1016/j.cscee.2023.100339
- A.K.D. Alsukaibi, Processes, 10, 1968 (2022); https://doi.org/10.3390/pr10101968
- B. Sarkodie, J. Amesimeku, C. Frimpong, E.K. Howard, Q. Feng and Z. Xu, Chemosphere, 313, 137654 (2023); https://doi.org/10.1016/j.chemosphere.2022.137654
- M. Pavel, C. Anastasescu, R.-N. State, A. Vasile, F. Papa and I. Balint, Catalysts, 13, 380 (2023); https://doi.org/10.3390/catal13020380
- G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng and Z. Li, Nanomaterials, 11, 1804 (2021); https://doi.org/10.3390/nano11071804
- R. Vinayagam, P. Senthil Kumar, G. Rangasamy, T. Varadavenkatesan, A. Hebbar, G. Murugesan, S. Srivastava, L.C. Goveas, N. Manoj Kumar and R. Selvaraj, Environ. Res., 216, 114766 (2022); https://doi.org/10.1016/j.envres.2022.114766
- S. Kumar, G. Kaur, M. Rawat, Y.F. Tsang, K.-Y. Lin and K.-H. Kim, J. Clean. Prod., 361, 132242 (2022); https://doi.org/10.1016/j.jclepro.2022.132242
- A.M. Abdallah and R. Awad, J. Supercond. Nov. Magn., 33, 1395 (2020); https://doi.org/10.1007/s10948-019-05296-1
- T. Ozkaya, A. Baykal, M.S. Toprak, Y. Koseoglu and Z. Durmus, J. Magn. Magn. Mater., 321, 2145 (2009); https://doi.org/10.1016/j.jmmm.2009.01.003
- C.I. Priyadharsini, G. Marimuthu, T. Pazhanivel, P.M. Anbarasan, V. Aroulmoji, V. Siva and L. Mohana, J. Sol-Gel Sci. Technol., 96, 416 (2020); https://doi.org/10.1007/s10971-020-05393-x
- D.Y. Kim, S.H. Ju, H.Y. Koo, S.K. Hong and Y.C. Kang, J. Alloys Compd., 417, 254 (2006); https://doi.org/10.1016/j.jallcom.2005.09.013
- A. UmaSudharshini, M. Bououdina, M. Venkateshwarlu, C. Manoharan and P. Dhamodharan, Surf. Interfaces, 19, 100535 (2020); https://doi.org/10.1016/j.surfin.2020.100535
- C. Karuppiah, B. Thirumalraj, S. Alagar, S. Piraman, Y.-J.J. Li and C.-C. Yang, Catalysts, 11, 76 (2021); https://doi.org/10.3390/catal11010076
- M. Yarestani, A.D. Khalaji, A. Rohani and D. Das, J. Sci. Islamic Republic of Iran, 25, 339 (2014).
- D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev and E. Kianfar, Adv. Mater. Sci. Eng., 2021, 5102014 (2021); https://doi.org/10.1155/2021/5102014
- M. Khalil, J. Yu, N. Liu and R.L. Lee, J. Nanopart. Res., 16, 2362 (2014); https://doi.org/10.1007/s11051-014-2362-x
- H.M. Saleh and A.I. Hassan, Sustainability, 15, 10891 (2023); https://doi.org/10.3390/su151410891
- J.A. Darr, J. Zhang, N.M. Makwana and X. Weng, Chem. Rev., 117, 11125 (2017); https://doi.org/10.1021/acs.chemrev.6b00417
- M. Escamilla, K. Pachuta, K. Huang, M. Klingseisen, H. Cao, H. Zhang, A. Sehirlioglu and E. Pentzer, Mater. Adv., 3, 2354 (2022); https://doi.org/10.1039/D1MA00832C
- A.F. Khusnuriyalova, M. Caporali, E. Hey-Hawkins, O.G. Sinyashin and D.G. Yakhvarov, Eur. J. Inorg. Chem., 2021, 3023 (2021); https://doi.org/10.1002/ejic.202100367
- R. Javed, A. Sajjad, S. Naz, H. Sajjad and Q. Ao, Int. J. Mol. Sci., 23, 10521 (2022); https://doi.org/10.3390/ijms231810521
- R. Javed, M. Zia, S. Naz, S.O. Aisida, N. Ain and Q. Ao, J. Nanobiotechnol., 18, 172 (2020); https://doi.org/10.1186/s12951-020-00704-4
- Y. Köseoglu, A. Baykal, M.S. Toprak, F. Gözüak, A.C. Basaran and B. Aktas, J. Alloys Compd., 462, 209 (2008); https://doi.org/10.1016/j.jallcom.2007.07.121
- A. Jose, K.R. Sunaja Devi, D. Pinheiro and S.L. Narayana, J. Photochem. Photobiol. B, 187, 25 (2018); https://doi.org/10.1016/j.jphotobiol.2018.07.022
- M. Anandan, S. Dinesh, N. Krishnakumar and K. Balamurugan, J. Mater. Sci. Mater. Electron., 27, 12517 (2016); https://doi.org/10.1007/s10854-016-5764-y
- M. Zhang, J. Lei, Y. Shi, L. Zhang, Y. Ye, D. Li and C. Mu, RSC Adv., 6, 83366 (2016); https://doi.org/10.1039/C6RA12988A
- J. Lei, L. Deng, X. Li, Y. Xu, D. Li and C. Mu, Environ. Sci. Pollut. Res. Int., 25, 26259 (2018); https://doi.org/10.1007/s11356-018-2679-6
- M. Farahmandjou, Phys. Chem. Res., 4, 153 (2016); https://doi.org/10.22036/PCR.2016.12909
- S. Farhadi, M. Javanmard and G. Nadri, Acta Chim. Slov., 63, 335 (2016); https://doi.org/10.17344/acsi.2016.2305
- M.M. Rahman, J.-Z. Wang, X.-L. Deng, Y. Li and H.-K. Liu, Electrochim. Acta, 55, 504 (2009); https://doi.org/10.1016/j.electacta.2009.08.068
- A. Askarinejad and A. Morsali, Ultrason. Sonochem., 16, 124 (2009); https://doi.org/10.1016/j.ultsonch.2008.05.015
- C. Dong, X. Xiao, G. Chen, H. Guan and Y. Wang, Mater. Chem. Phys., 155, 1 (2015); https://doi.org/10.1016/j.matchemphys.2015.01.033
- A.M. Abdallah and R. Awad, Physica B, 608, 412898 (2021); https://doi.org/10.1016/j.physb.2021.412898
- M. Christy, M.R. Jisha, A.R. Kim, K.S. Nahm, D.J. Yoo, E.K. Suh, T.S. Devi Kumari, T. Prem Kumar and A.M. Stephan, Bull. Korean Chem. Soc., 32, 1204 (2011); https://doi.org/10.5012/bkcs.2011.32.4.1204
- C. Luo, Y. Zhang, X. Zeng, Y. Zeng and Y. Wang, J. Colloid Interface Sci., 288, 444 (2005); https://doi.org/10.1016/j.jcis.2005.03.005
- N. Rai and S. Kanagaraj, ACS Omega, 26, 22363 (2022); https://doi.org/10.1021/acsomega.2c01266
- R. Abbasi, G. Shineh, M. Mobaraki, S. Doughty and L. Tayebi, J. Nanopart. Res., 25, 43 (2023); https://doi.org/10.1007/s11051-023-05690-w
- R. Bhargava, S. Khan, N. Ahmad and M.M.N. Ansari, AIP Conf. Proc., 1953, 030034 (2018); https://doi.org/10.1063/1.5032369
- T. He, D. Chen, X. Jiao, Y. Wang and Y. Duan, Chem. Mater., 17, 4023 (2005); https://doi.org/10.1021/cm050727s
- S. Dubey, J. Kumar, A. Kumar and Y.C. Sharma, Adv. Powder Technol., 29, 2583 (2018); https://doi.org/10.1016/j.apt.2018.03.009
- P. Lokanatha Reddy, K. Deshmukh, K. Chidambaram, B. Ahamed, K. Kumar Sadasivuni, D. Ponnamma, R. Lakshmipathy, D. Dayananda and S.K. Khadheer Pasha, Mater. Today Proc., 9, 175 (2019); https://doi.org/10.1016/j.matpr.2019.02.150
- Y. Yang, J. Liang, W. Jin, Y. Li, M. Xuan, S. Wang, X. Sun, C. Chen and J. Zhang, RSC Adv., 10, 14670 (2020); https://doi.org/10.1039/D0RA01307B
- A. Sarfraz and K. Hasanain, Acta Phys. Pol. A, 125, 139 (2014); https://doi.org/10.12693/APhysPolA.125.139
- B.M. Abu-Zied and K.A. Alamry, J. Alloys Compd., 798, 820 (2019); https://doi.org/10.1016/j.jallcom.2019.05.249
- A. Miura, Y. Uraoka, T. Fuyuki, S. Yoshii and I. Yamashita, J. Appl. Phys., 103, 074503 (2008); https://doi.org/10.1063/1.2888357
- K.M. Mohamed, J.J. Benitto, J.J. Vijaya and M. Bououdina, Crystals, 13, 329 (2023); https://doi.org/10.3390/cryst13020329
- P. Innocenzi, J. Non-Cryst. Solids, 316, 309 (2003); https://doi.org/10.1016/S0022-3093(02)01637-X
- M. Fernandes Queiroz, K. Melo, D. Sabry, G. Sassaki and H. Rocha, Mar. Drugs, 13, 141 (2014); https://doi.org/10.3390/md13010141
- M. Sertçelik, J. Chem. Res., 45, 42 (2021); https://doi.org/10.1177/1747519820924636
- E.N. Mainsah, S.-J.E. Ntum, M.A. Conde, G.T. Chi, J. Raftery, P.T. Ndifon, Cryst. Struct. Theor. Appl., 8, 97138 (2019); https://doi.org/10.4236/csta.2019.84004
- Y. Liu, G. Zhu, B. Ge, H. Zhou, A. Yuan and X. Shen, CrystEngComm, 14, 6264 (2012); https://doi.org/10.1039/c2ce25788b
- M. Sahu, V.R.M. Reddy, B. Kim, B. Patro, C. Park, W.K. Kim and P. Sharma, Materials, 15, 1708 (2022); https://doi.org/10.3390/ma15051708
- G. Hitkari, S. Sandhya, P. Gajanan, M.K. Shrivash and D. Kumar, J. Mater. Sci. Eng., 7, 419 (2018); https://doi.org/10.4172/2169-0022.1000419
- I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H. Nawaz, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman and M. Abbas, Adv. Powder Technol., 28, 2035 (2017); https://doi.org/10.1016/j.apt.2017.05.008
- R.R. Samal, A.K. Samantara, S. Mahalik, J.N. Behera, B. Dash and K. Sanjay, New J. Chem., 45, 2795 (2021); https://doi.org/10.1039/D0NJ05088A
- A.R. Campanelli and L. Scaramuzza, Acta Cryst., C42, 1380 (1986); https://doi.org/10.1107/S0108270186092193
- Y. Wang, J.-C. Shi, J.-L. Cao, G. Sun and Z.-Y. Zhang, Mater. Lett., 65, 222 (2011); https://doi.org/10.1016/j.matlet.2010.09.090
- J. Ahmed, T. Ahmad, K.V. Ramanujachary, S.E. Lofland and A.K. Ganguli, J. Colloid Interface Sci., 321, 434 (2008); https://doi.org/10.1016/j.jcis.2008.01.052
- S. Kundu and M. Jayachandran, J. Nanopart. Res., 15, 1543 (2013); https://doi.org/10.1007/s11051-013-1543-3
- S. Abouali, M. Akbari Garakani, B. Zhang, Z.-L. Xu, E. Kamali-Heidari, J. Huang, J. Huang and J.-K. Kim, ACS Appl. Mater. Interfaces, 7, 13503 (2015); https://doi.org/10.1021/acsami.5b02787
- X. Dai, Y. Dai, J. Lu, L. Pu, W. Wang, J. Jin, F. Ma and N. Tie, Ionics, 26, 2501 (2020); https://doi.org/10.1007/s11581-019-03333-6
- Y. Zhang, X. Zhong, J. Zhu and X. Song, Nanotechnology, 18, 195605 (2007); https://doi.org/10.1088/0957-4484/18/19/195605
- M. Ghosh, E.V. Sampathkumaran and C.N.R. Rao, Chem. Mater., 17, 2348 (2005); https://doi.org/10.1021/cm0478475
- S.-Y. Zhang, T.-T. Li, H.-L. Zhu and Y.-Q. Zheng, J. Mater. Sci., 53, 4323 (2018); https://doi.org/10.1007/s10853-017-1855-2
- S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara, M. Salmeron and A. Nilsson, J. Phys.: Condens. Matter., 20, 184025 (2008); https://doi.org/10.1088/0953-8984/20/18/184025
- A.R. Deline, B.P. Frank, C.L. Smith, L.R. Sigmon, A.N. Wallace, M.J. Gallagher, D.G. Goodwin Jr., D.P. Durkin and D.H. Fairbrother, Chem. Rev., 120, 11651 (2020); https://doi.org/10.1021/acs.chemrev.0c00351
- P. Parthasarathy, S. Sajjad, J. Saleem, M. Alherbawi and G. Mckay, Separations, 9, 139 (2022); https://doi.org/10.3390/separations9060139
- K. Sharma, S. Pandit, B.S. Thapa and M. Pant, Catalysts, 12, 1219 (2022); https://doi.org/10.3390/catal12101219
- A. Kudo and Y. Miseki, 38, 253 (2009); https://doi.org/10.1039/B800489G
- I.K. Konstantinou and T.A. Albanis, Appl. Catal. B, 49, 1 (2004); https://doi.org/10.1016/j.apcatb.2003.11.010
- M.B. Tahir, M. Sohaib, M. Sagir and M. Rafique, Encyclopedia Smart Mater., 2, 578 (2022); https://doi.org/10.1016/B978-0-12-815732-9.00006-1
- S.J. Armakovic, M.M. Savanovic and S. Armakovic, Catalysts, 13, 26 (2022); https://doi.org/10.3390/catal13010026
- H. Chen, C. Xue, D. Cui, M. Liu, Y. Chen, Y. Li and W. Zhang, RSC Adv., 10, 15245 (2020); https://doi.org/10.1039/C9RA10437B
- R.S. Reena, A. Aslinjensipriya, M. Jose and S.J. Das, J. Mater. Sci. Mater. Electron., 31, 22057 (2020); https://doi.org/10.1007/s10854-020-04708-6
References
Q. Liu, Pollution and Treatment of Dye Waste-Water, IOP Conf. Ser. Earth Environ. Sci., 514, 052001 (2020); https://doi.org/10.1088/1755-1315/514/5/052001
D.A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193 (2019); https://doi.org/10.1007/s13762-018-2130-z
L. He, F. Michailidou, H.L. Gahlon and W. Zeng, Chem. Res. Toxicol.. 35, 901 (2022); https://doi.org/10.1021/acs.chemrestox.1c00427
B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
C.V. Nachiyar, A.D. Rakshi, S. Sandhya, N.B.D. Jebasta and J. Nellore, Case Stud. Chem. Environ. Eng., 7, 100339 (2023); https://doi.org/10.1016/j.cscee.2023.100339
A.K.D. Alsukaibi, Processes, 10, 1968 (2022); https://doi.org/10.3390/pr10101968
B. Sarkodie, J. Amesimeku, C. Frimpong, E.K. Howard, Q. Feng and Z. Xu, Chemosphere, 313, 137654 (2023); https://doi.org/10.1016/j.chemosphere.2022.137654
M. Pavel, C. Anastasescu, R.-N. State, A. Vasile, F. Papa and I. Balint, Catalysts, 13, 380 (2023); https://doi.org/10.3390/catal13020380
G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng and Z. Li, Nanomaterials, 11, 1804 (2021); https://doi.org/10.3390/nano11071804
R. Vinayagam, P. Senthil Kumar, G. Rangasamy, T. Varadavenkatesan, A. Hebbar, G. Murugesan, S. Srivastava, L.C. Goveas, N. Manoj Kumar and R. Selvaraj, Environ. Res., 216, 114766 (2022); https://doi.org/10.1016/j.envres.2022.114766
S. Kumar, G. Kaur, M. Rawat, Y.F. Tsang, K.-Y. Lin and K.-H. Kim, J. Clean. Prod., 361, 132242 (2022); https://doi.org/10.1016/j.jclepro.2022.132242
A.M. Abdallah and R. Awad, J. Supercond. Nov. Magn., 33, 1395 (2020); https://doi.org/10.1007/s10948-019-05296-1
T. Ozkaya, A. Baykal, M.S. Toprak, Y. Koseoglu and Z. Durmus, J. Magn. Magn. Mater., 321, 2145 (2009); https://doi.org/10.1016/j.jmmm.2009.01.003
C.I. Priyadharsini, G. Marimuthu, T. Pazhanivel, P.M. Anbarasan, V. Aroulmoji, V. Siva and L. Mohana, J. Sol-Gel Sci. Technol., 96, 416 (2020); https://doi.org/10.1007/s10971-020-05393-x
D.Y. Kim, S.H. Ju, H.Y. Koo, S.K. Hong and Y.C. Kang, J. Alloys Compd., 417, 254 (2006); https://doi.org/10.1016/j.jallcom.2005.09.013
A. UmaSudharshini, M. Bououdina, M. Venkateshwarlu, C. Manoharan and P. Dhamodharan, Surf. Interfaces, 19, 100535 (2020); https://doi.org/10.1016/j.surfin.2020.100535
C. Karuppiah, B. Thirumalraj, S. Alagar, S. Piraman, Y.-J.J. Li and C.-C. Yang, Catalysts, 11, 76 (2021); https://doi.org/10.3390/catal11010076
M. Yarestani, A.D. Khalaji, A. Rohani and D. Das, J. Sci. Islamic Republic of Iran, 25, 339 (2014).
D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev and E. Kianfar, Adv. Mater. Sci. Eng., 2021, 5102014 (2021); https://doi.org/10.1155/2021/5102014
M. Khalil, J. Yu, N. Liu and R.L. Lee, J. Nanopart. Res., 16, 2362 (2014); https://doi.org/10.1007/s11051-014-2362-x
H.M. Saleh and A.I. Hassan, Sustainability, 15, 10891 (2023); https://doi.org/10.3390/su151410891
J.A. Darr, J. Zhang, N.M. Makwana and X. Weng, Chem. Rev., 117, 11125 (2017); https://doi.org/10.1021/acs.chemrev.6b00417
M. Escamilla, K. Pachuta, K. Huang, M. Klingseisen, H. Cao, H. Zhang, A. Sehirlioglu and E. Pentzer, Mater. Adv., 3, 2354 (2022); https://doi.org/10.1039/D1MA00832C
A.F. Khusnuriyalova, M. Caporali, E. Hey-Hawkins, O.G. Sinyashin and D.G. Yakhvarov, Eur. J. Inorg. Chem., 2021, 3023 (2021); https://doi.org/10.1002/ejic.202100367
R. Javed, A. Sajjad, S. Naz, H. Sajjad and Q. Ao, Int. J. Mol. Sci., 23, 10521 (2022); https://doi.org/10.3390/ijms231810521
R. Javed, M. Zia, S. Naz, S.O. Aisida, N. Ain and Q. Ao, J. Nanobiotechnol., 18, 172 (2020); https://doi.org/10.1186/s12951-020-00704-4
Y. Köseoglu, A. Baykal, M.S. Toprak, F. Gözüak, A.C. Basaran and B. Aktas, J. Alloys Compd., 462, 209 (2008); https://doi.org/10.1016/j.jallcom.2007.07.121
A. Jose, K.R. Sunaja Devi, D. Pinheiro and S.L. Narayana, J. Photochem. Photobiol. B, 187, 25 (2018); https://doi.org/10.1016/j.jphotobiol.2018.07.022
M. Anandan, S. Dinesh, N. Krishnakumar and K. Balamurugan, J. Mater. Sci. Mater. Electron., 27, 12517 (2016); https://doi.org/10.1007/s10854-016-5764-y
M. Zhang, J. Lei, Y. Shi, L. Zhang, Y. Ye, D. Li and C. Mu, RSC Adv., 6, 83366 (2016); https://doi.org/10.1039/C6RA12988A
J. Lei, L. Deng, X. Li, Y. Xu, D. Li and C. Mu, Environ. Sci. Pollut. Res. Int., 25, 26259 (2018); https://doi.org/10.1007/s11356-018-2679-6
M. Farahmandjou, Phys. Chem. Res., 4, 153 (2016); https://doi.org/10.22036/PCR.2016.12909
S. Farhadi, M. Javanmard and G. Nadri, Acta Chim. Slov., 63, 335 (2016); https://doi.org/10.17344/acsi.2016.2305
M.M. Rahman, J.-Z. Wang, X.-L. Deng, Y. Li and H.-K. Liu, Electrochim. Acta, 55, 504 (2009); https://doi.org/10.1016/j.electacta.2009.08.068
A. Askarinejad and A. Morsali, Ultrason. Sonochem., 16, 124 (2009); https://doi.org/10.1016/j.ultsonch.2008.05.015
C. Dong, X. Xiao, G. Chen, H. Guan and Y. Wang, Mater. Chem. Phys., 155, 1 (2015); https://doi.org/10.1016/j.matchemphys.2015.01.033
A.M. Abdallah and R. Awad, Physica B, 608, 412898 (2021); https://doi.org/10.1016/j.physb.2021.412898
M. Christy, M.R. Jisha, A.R. Kim, K.S. Nahm, D.J. Yoo, E.K. Suh, T.S. Devi Kumari, T. Prem Kumar and A.M. Stephan, Bull. Korean Chem. Soc., 32, 1204 (2011); https://doi.org/10.5012/bkcs.2011.32.4.1204
C. Luo, Y. Zhang, X. Zeng, Y. Zeng and Y. Wang, J. Colloid Interface Sci., 288, 444 (2005); https://doi.org/10.1016/j.jcis.2005.03.005
N. Rai and S. Kanagaraj, ACS Omega, 26, 22363 (2022); https://doi.org/10.1021/acsomega.2c01266
R. Abbasi, G. Shineh, M. Mobaraki, S. Doughty and L. Tayebi, J. Nanopart. Res., 25, 43 (2023); https://doi.org/10.1007/s11051-023-05690-w
R. Bhargava, S. Khan, N. Ahmad and M.M.N. Ansari, AIP Conf. Proc., 1953, 030034 (2018); https://doi.org/10.1063/1.5032369
T. He, D. Chen, X. Jiao, Y. Wang and Y. Duan, Chem. Mater., 17, 4023 (2005); https://doi.org/10.1021/cm050727s
S. Dubey, J. Kumar, A. Kumar and Y.C. Sharma, Adv. Powder Technol., 29, 2583 (2018); https://doi.org/10.1016/j.apt.2018.03.009
P. Lokanatha Reddy, K. Deshmukh, K. Chidambaram, B. Ahamed, K. Kumar Sadasivuni, D. Ponnamma, R. Lakshmipathy, D. Dayananda and S.K. Khadheer Pasha, Mater. Today Proc., 9, 175 (2019); https://doi.org/10.1016/j.matpr.2019.02.150
Y. Yang, J. Liang, W. Jin, Y. Li, M. Xuan, S. Wang, X. Sun, C. Chen and J. Zhang, RSC Adv., 10, 14670 (2020); https://doi.org/10.1039/D0RA01307B
A. Sarfraz and K. Hasanain, Acta Phys. Pol. A, 125, 139 (2014); https://doi.org/10.12693/APhysPolA.125.139
B.M. Abu-Zied and K.A. Alamry, J. Alloys Compd., 798, 820 (2019); https://doi.org/10.1016/j.jallcom.2019.05.249
A. Miura, Y. Uraoka, T. Fuyuki, S. Yoshii and I. Yamashita, J. Appl. Phys., 103, 074503 (2008); https://doi.org/10.1063/1.2888357
K.M. Mohamed, J.J. Benitto, J.J. Vijaya and M. Bououdina, Crystals, 13, 329 (2023); https://doi.org/10.3390/cryst13020329
P. Innocenzi, J. Non-Cryst. Solids, 316, 309 (2003); https://doi.org/10.1016/S0022-3093(02)01637-X
M. Fernandes Queiroz, K. Melo, D. Sabry, G. Sassaki and H. Rocha, Mar. Drugs, 13, 141 (2014); https://doi.org/10.3390/md13010141
M. Sertçelik, J. Chem. Res., 45, 42 (2021); https://doi.org/10.1177/1747519820924636
E.N. Mainsah, S.-J.E. Ntum, M.A. Conde, G.T. Chi, J. Raftery, P.T. Ndifon, Cryst. Struct. Theor. Appl., 8, 97138 (2019); https://doi.org/10.4236/csta.2019.84004
Y. Liu, G. Zhu, B. Ge, H. Zhou, A. Yuan and X. Shen, CrystEngComm, 14, 6264 (2012); https://doi.org/10.1039/c2ce25788b
M. Sahu, V.R.M. Reddy, B. Kim, B. Patro, C. Park, W.K. Kim and P. Sharma, Materials, 15, 1708 (2022); https://doi.org/10.3390/ma15051708
G. Hitkari, S. Sandhya, P. Gajanan, M.K. Shrivash and D. Kumar, J. Mater. Sci. Eng., 7, 419 (2018); https://doi.org/10.4172/2169-0022.1000419
I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H. Nawaz, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman and M. Abbas, Adv. Powder Technol., 28, 2035 (2017); https://doi.org/10.1016/j.apt.2017.05.008
R.R. Samal, A.K. Samantara, S. Mahalik, J.N. Behera, B. Dash and K. Sanjay, New J. Chem., 45, 2795 (2021); https://doi.org/10.1039/D0NJ05088A
A.R. Campanelli and L. Scaramuzza, Acta Cryst., C42, 1380 (1986); https://doi.org/10.1107/S0108270186092193
Y. Wang, J.-C. Shi, J.-L. Cao, G. Sun and Z.-Y. Zhang, Mater. Lett., 65, 222 (2011); https://doi.org/10.1016/j.matlet.2010.09.090
J. Ahmed, T. Ahmad, K.V. Ramanujachary, S.E. Lofland and A.K. Ganguli, J. Colloid Interface Sci., 321, 434 (2008); https://doi.org/10.1016/j.jcis.2008.01.052
S. Kundu and M. Jayachandran, J. Nanopart. Res., 15, 1543 (2013); https://doi.org/10.1007/s11051-013-1543-3
S. Abouali, M. Akbari Garakani, B. Zhang, Z.-L. Xu, E. Kamali-Heidari, J. Huang, J. Huang and J.-K. Kim, ACS Appl. Mater. Interfaces, 7, 13503 (2015); https://doi.org/10.1021/acsami.5b02787
X. Dai, Y. Dai, J. Lu, L. Pu, W. Wang, J. Jin, F. Ma and N. Tie, Ionics, 26, 2501 (2020); https://doi.org/10.1007/s11581-019-03333-6
Y. Zhang, X. Zhong, J. Zhu and X. Song, Nanotechnology, 18, 195605 (2007); https://doi.org/10.1088/0957-4484/18/19/195605
M. Ghosh, E.V. Sampathkumaran and C.N.R. Rao, Chem. Mater., 17, 2348 (2005); https://doi.org/10.1021/cm0478475
S.-Y. Zhang, T.-T. Li, H.-L. Zhu and Y.-Q. Zheng, J. Mater. Sci., 53, 4323 (2018); https://doi.org/10.1007/s10853-017-1855-2
S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara, M. Salmeron and A. Nilsson, J. Phys.: Condens. Matter., 20, 184025 (2008); https://doi.org/10.1088/0953-8984/20/18/184025
A.R. Deline, B.P. Frank, C.L. Smith, L.R. Sigmon, A.N. Wallace, M.J. Gallagher, D.G. Goodwin Jr., D.P. Durkin and D.H. Fairbrother, Chem. Rev., 120, 11651 (2020); https://doi.org/10.1021/acs.chemrev.0c00351
P. Parthasarathy, S. Sajjad, J. Saleem, M. Alherbawi and G. Mckay, Separations, 9, 139 (2022); https://doi.org/10.3390/separations9060139
K. Sharma, S. Pandit, B.S. Thapa and M. Pant, Catalysts, 12, 1219 (2022); https://doi.org/10.3390/catal12101219
A. Kudo and Y. Miseki, 38, 253 (2009); https://doi.org/10.1039/B800489G
I.K. Konstantinou and T.A. Albanis, Appl. Catal. B, 49, 1 (2004); https://doi.org/10.1016/j.apcatb.2003.11.010
M.B. Tahir, M. Sohaib, M. Sagir and M. Rafique, Encyclopedia Smart Mater., 2, 578 (2022); https://doi.org/10.1016/B978-0-12-815732-9.00006-1
S.J. Armakovic, M.M. Savanovic and S. Armakovic, Catalysts, 13, 26 (2022); https://doi.org/10.3390/catal13010026
H. Chen, C. Xue, D. Cui, M. Liu, Y. Chen, Y. Li and W. Zhang, RSC Adv., 10, 15245 (2020); https://doi.org/10.1039/C9RA10437B
R.S. Reena, A. Aslinjensipriya, M. Jose and S.J. Das, J. Mater. Sci. Mater. Electron., 31, 22057 (2020); https://doi.org/10.1007/s10854-020-04708-6