Copyright (c) 2024 Jissa Theresa Kurian, Joseph Kadanthottu Sebastian
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biogenic ZnO Nanoparticles Derived from Garcinia gummi-gutta Leaves: Synthesis, Characterization and its Multifaceted Applications
Corresponding Author(s) : K.S. Joseph
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
The current study focused on the bioreduction synthesis of ZnO nanoparticles using Garcinia gummi-gutta leaf extracts. The UV-vis analysis of the nanoparticles has reported the formation of an SPR peak at 379 nm. The functional groups taking part in the reduction reaction were analyzed using the FTIR technique and the average crystalline size of ZnO nanoparticles were found to be 22.27 nm from XRD measurements. The SEM and TEM images revealed the hexagonal shape of the nanoparticles with an average size 72.78 nm and 71.91 nm, respectively. Further, the synthesized nanoparticles were reported to be efficient degradation reactive textile dyes. The photodegradation results reported 92-100% degradation of the reactive dyes within 80-320 min. The antibacterial efficacy of the nanoparticles was investigated and the MIC of the nanoparticles was found to be 100 µg/mL. The synthesized ZnO nanoparticles have exhibited significant cytotoxic effects on the MCF and HEP-G2 cell lines.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ahmed, Annu, S.A. Chaudhry and S. Ikram, J. Photochem. Photobiol. B: Biology, 166, 272 (2017); https://doi.org/10.1016/j.jphotobiol.2016.12.011
- T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam and R. Selvaraj, J. Photochem. Photobiol. B, 199, 111621 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111621
- J.T. Kurian, P. Chandran and J.K. Sebastian, J. Clust. Sci., 34, 2229 (2023); https://doi.org/10.1007/s10876-022-02403-6
- P.C. Nagajyothi, S.V. Prabhakar Vattikuti, K.C. Devarayapalli, K. Yoo, J. Shim and T.V.M. Sreekanth, Crit. Rev. Environ. Sci. Technol., 50, 2617 (2020); https://doi.org/10.1080/10643389.2019.1705103
- A. Khanna and V.K. Shetty, Sol. Energy, 99, 67 (2014); https://doi.org/10.1016/j.solener.2013.10.032
- Z.H. Mahmoud, M.S. Falih, O.E. Khalaf, M.A. Farhan and F.K. Ali, J. Adv. Pharm. Educ. Res., 8, 51 (2018).
- R. Rathnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath and V. Alagan, J. Mater. Sci. Mater. Electron., 28, 10374 (2017); https://doi.org/10.1007/s10854-017-6807-8
- J. Gangwar and J.K. Sebastian, Water Sci. Technol., 84, 3286 (2021); https://doi.org/10.2166/wst.2021.430
- A. Kumar, S.R. Shah, T.J. Jayeoye, A. Kumar, A. Parihar, B. Prajapati, S. Singh and D.U. Kapoor, Front. Nanotechnol., 5, 1175149 (2023); https://doi.org/10.3389/fnano.2023.1175149
- J. Puthukulangara Jaison and J. Kadanthottu Sebastian, Water Pract. Technol., 18, 911 (2023); https://doi.org/10.2166/wpt.2023.041
- V. Batra, I. Kaur, D. Pathania, Sonu and V. Chaudhary, Appl. Surf. Sci. Adv., 11, 100314 (2022); https://doi.org/10.1016/j.apsadv.2022.100314
- T. Shabatina, O. Vernaya, A. Shumilkin, A. Semenov and M. Melnikov, Materials, 15, 3602 (2022); https://doi.org/10.3390/ma15103602
- U.L. Ifeanyichukwu, O.E. Fayemi and C.N. Ateba, Molecules, 25, 4521 (2020); https://doi.org/10.3390/molecules25194521
- K. Elumalai and S. Velmurugan, Appl. Surf. Sci., 345, 329 (2015); https://doi.org/10.1016/j.apsusc.2015.03.176
- J.P. Jaison, B. Balasubramanian, J. Gangwar, N. James, M. Pappuswamy, A.V. Anand, N.A. Al-Dhabi, M.V. Arasu, W.-C. Liu and J.K. Sebastian, Antibiotics, 12, 543 (2023); https://doi.org/10.3390/antibiotics12030543
- N.A. Sarip, N.I. Aminudin and W.H. Danial, Environ. Chem. Lett., 20, 469 (2022); https://doi.org/10.1007/s10311-021-01319-3
- M. Mannarmannan and K. Biswas, ChemistrySelect, 4, 12739 (2019); https://doi.org/10.1002/slct.201903159
- A.R. Pai, A.M. Pillai, A. Jayapraksh and A. John, Nano Biomed. Eng., 8, 288 (2016); https://doi.org/10.5101/nbe.v8i4.p288-296
- S.M. George and T. Senthilnathan, Sens. Lett., 15, 156 (2017); https://doi.org/10.1166/sl.2017.3783
- M. Raghavendra, K.V. Yatish and H.S. Lalithamba, Eur. Phys. J. Plus, 132, 358 (2017); https://doi.org/10.1140/epjp/i2017-11627-1
- E. Gurgur, S.S. Oluyamo, A.O. Adetuyi, O.I. Omotunde and A.E. Okoronkwo, SN Appl. Sci., 2, 911 (2020); https://doi.org/10.1007/s42452-020-2269-3
- M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
- F.D. Gonelimali, J. Lin, W. Miao, J. Xuan, F. Charles, M. Chen and S.R. Hatab, Front. Microbiol., 9, 1639 (2018); https://doi.org/10.3389/fmicb.2018.01639
- F. Denizot and R. Lang, J. Immunol. Methods, 89, 271 (1986); https://doi.org/10.1016/0022-1759(86)90368-6
- M. Frei, BioFiles Online, 6, 17 (2011).
- P. Jishma, T. Roshmi, S. Snigdha, and E. K. Radhakrishnan, 3 Biotech, 8, 97 (2018); https://doi.org/10.1007/s13205-018-1116-3
- M. Bilal, M. Iqbal, H. Hu and X. Zhang, Water Sci. Technol., 73, 2332 (2016); https://doi.org/10.2166/wst.2016.082
- N. Supraja, T. Prasad, A.D. Gandhi, D. Anbumani, P. Kavitha and R. Babujanarthanam, Biochem. Biophys. Rep., 14, 69 (2018); https://doi.org/10.1016/j.bbrep.2018.04.004
- D. Jain, A.A. Shivani, A.A. Bhojiya, H. Singh, H.K. Daima, M. Singh, S.R. Mohanty, B.J. Stephen and A. Singh, Front Chem., 8, 778 (2020); https://doi.org/10.3389/fchem.2020.00778
- A.M. Abdo, A. Fouda, A.M. Eid, N.M. Fahmy, A.M. Elsayed, A.M.A. Khalil, O.M. Alzahrani, A.F. Ahmed and A.M. Soliman, Materials, 14, 6983 (2021); https://doi.org/10.3390/ma14226983
- M. Rafique, R. Tahir, S.S.A. Gillani, M.B. Tahir, M. Shakil, T. Iqbal and M.O. Abdellahi, Int. J. Environ. Anal. Chem., 102, 23 (2022); https://doi.org/10.1080/03067319.2020.1715379
- M. Aminuzzaman, L.P. Ying, W.-S. Goh and A. Watanabe, Bull. Mater. Sci., 41, 50 (2018); https://doi.org/10.1007/s12034-018-1568-4
- B.S. Jena, G.K. Jayaprakasha, R.P. Singh and K.K. Sakariah, J. Agric. Food Chem., 50, 10 (2002); https://doi.org/10.1021/jf010753k
- A. Rajan, M. MeenaKumari and D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 793 (2014); https://doi.org/10.1016/j.saa.2013.09.086
- J. Jiang, G. Oberdörster and P. Biswas, J. Nanopart. Res., 11, 77 (2009); https://doi.org/10.1007/s11051-008-9446-4
- S. Yedurkar, C. Maurya and P. Mahanwar, J. Open Synth. Theory Appl., 5, 1 (2016); https://doi.org/10.4236/ojsta.2016.51001
- L. Wang, Y. Wu, J. Xie, S. Wu and Z. Wu, Mater. Sci. Eng. C, 86, 1 (2018); https://doi.org/10.1016/j.msec.2018.01.003
- N. Saadat and S.V. Gupta, J. Oncol., 2012, 647206 (2012); https://doi.org/10.1155/2012/647206
- A. Umamaheswari, S.L. Prabu, S.A. John and A. Puratchikody, Biotechnol. Rep., 29, e00595 (2021); https://doi.org/10.1016/j.btre.2021.e00595
References
S. Ahmed, Annu, S.A. Chaudhry and S. Ikram, J. Photochem. Photobiol. B: Biology, 166, 272 (2017); https://doi.org/10.1016/j.jphotobiol.2016.12.011
T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam and R. Selvaraj, J. Photochem. Photobiol. B, 199, 111621 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111621
J.T. Kurian, P. Chandran and J.K. Sebastian, J. Clust. Sci., 34, 2229 (2023); https://doi.org/10.1007/s10876-022-02403-6
P.C. Nagajyothi, S.V. Prabhakar Vattikuti, K.C. Devarayapalli, K. Yoo, J. Shim and T.V.M. Sreekanth, Crit. Rev. Environ. Sci. Technol., 50, 2617 (2020); https://doi.org/10.1080/10643389.2019.1705103
A. Khanna and V.K. Shetty, Sol. Energy, 99, 67 (2014); https://doi.org/10.1016/j.solener.2013.10.032
Z.H. Mahmoud, M.S. Falih, O.E. Khalaf, M.A. Farhan and F.K. Ali, J. Adv. Pharm. Educ. Res., 8, 51 (2018).
R. Rathnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath and V. Alagan, J. Mater. Sci. Mater. Electron., 28, 10374 (2017); https://doi.org/10.1007/s10854-017-6807-8
J. Gangwar and J.K. Sebastian, Water Sci. Technol., 84, 3286 (2021); https://doi.org/10.2166/wst.2021.430
A. Kumar, S.R. Shah, T.J. Jayeoye, A. Kumar, A. Parihar, B. Prajapati, S. Singh and D.U. Kapoor, Front. Nanotechnol., 5, 1175149 (2023); https://doi.org/10.3389/fnano.2023.1175149
J. Puthukulangara Jaison and J. Kadanthottu Sebastian, Water Pract. Technol., 18, 911 (2023); https://doi.org/10.2166/wpt.2023.041
V. Batra, I. Kaur, D. Pathania, Sonu and V. Chaudhary, Appl. Surf. Sci. Adv., 11, 100314 (2022); https://doi.org/10.1016/j.apsadv.2022.100314
T. Shabatina, O. Vernaya, A. Shumilkin, A. Semenov and M. Melnikov, Materials, 15, 3602 (2022); https://doi.org/10.3390/ma15103602
U.L. Ifeanyichukwu, O.E. Fayemi and C.N. Ateba, Molecules, 25, 4521 (2020); https://doi.org/10.3390/molecules25194521
K. Elumalai and S. Velmurugan, Appl. Surf. Sci., 345, 329 (2015); https://doi.org/10.1016/j.apsusc.2015.03.176
J.P. Jaison, B. Balasubramanian, J. Gangwar, N. James, M. Pappuswamy, A.V. Anand, N.A. Al-Dhabi, M.V. Arasu, W.-C. Liu and J.K. Sebastian, Antibiotics, 12, 543 (2023); https://doi.org/10.3390/antibiotics12030543
N.A. Sarip, N.I. Aminudin and W.H. Danial, Environ. Chem. Lett., 20, 469 (2022); https://doi.org/10.1007/s10311-021-01319-3
M. Mannarmannan and K. Biswas, ChemistrySelect, 4, 12739 (2019); https://doi.org/10.1002/slct.201903159
A.R. Pai, A.M. Pillai, A. Jayapraksh and A. John, Nano Biomed. Eng., 8, 288 (2016); https://doi.org/10.5101/nbe.v8i4.p288-296
S.M. George and T. Senthilnathan, Sens. Lett., 15, 156 (2017); https://doi.org/10.1166/sl.2017.3783
M. Raghavendra, K.V. Yatish and H.S. Lalithamba, Eur. Phys. J. Plus, 132, 358 (2017); https://doi.org/10.1140/epjp/i2017-11627-1
E. Gurgur, S.S. Oluyamo, A.O. Adetuyi, O.I. Omotunde and A.E. Okoronkwo, SN Appl. Sci., 2, 911 (2020); https://doi.org/10.1007/s42452-020-2269-3
M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
F.D. Gonelimali, J. Lin, W. Miao, J. Xuan, F. Charles, M. Chen and S.R. Hatab, Front. Microbiol., 9, 1639 (2018); https://doi.org/10.3389/fmicb.2018.01639
F. Denizot and R. Lang, J. Immunol. Methods, 89, 271 (1986); https://doi.org/10.1016/0022-1759(86)90368-6
M. Frei, BioFiles Online, 6, 17 (2011).
P. Jishma, T. Roshmi, S. Snigdha, and E. K. Radhakrishnan, 3 Biotech, 8, 97 (2018); https://doi.org/10.1007/s13205-018-1116-3
M. Bilal, M. Iqbal, H. Hu and X. Zhang, Water Sci. Technol., 73, 2332 (2016); https://doi.org/10.2166/wst.2016.082
N. Supraja, T. Prasad, A.D. Gandhi, D. Anbumani, P. Kavitha and R. Babujanarthanam, Biochem. Biophys. Rep., 14, 69 (2018); https://doi.org/10.1016/j.bbrep.2018.04.004
D. Jain, A.A. Shivani, A.A. Bhojiya, H. Singh, H.K. Daima, M. Singh, S.R. Mohanty, B.J. Stephen and A. Singh, Front Chem., 8, 778 (2020); https://doi.org/10.3389/fchem.2020.00778
A.M. Abdo, A. Fouda, A.M. Eid, N.M. Fahmy, A.M. Elsayed, A.M.A. Khalil, O.M. Alzahrani, A.F. Ahmed and A.M. Soliman, Materials, 14, 6983 (2021); https://doi.org/10.3390/ma14226983
M. Rafique, R. Tahir, S.S.A. Gillani, M.B. Tahir, M. Shakil, T. Iqbal and M.O. Abdellahi, Int. J. Environ. Anal. Chem., 102, 23 (2022); https://doi.org/10.1080/03067319.2020.1715379
M. Aminuzzaman, L.P. Ying, W.-S. Goh and A. Watanabe, Bull. Mater. Sci., 41, 50 (2018); https://doi.org/10.1007/s12034-018-1568-4
B.S. Jena, G.K. Jayaprakasha, R.P. Singh and K.K. Sakariah, J. Agric. Food Chem., 50, 10 (2002); https://doi.org/10.1021/jf010753k
A. Rajan, M. MeenaKumari and D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 793 (2014); https://doi.org/10.1016/j.saa.2013.09.086
J. Jiang, G. Oberdörster and P. Biswas, J. Nanopart. Res., 11, 77 (2009); https://doi.org/10.1007/s11051-008-9446-4
S. Yedurkar, C. Maurya and P. Mahanwar, J. Open Synth. Theory Appl., 5, 1 (2016); https://doi.org/10.4236/ojsta.2016.51001
L. Wang, Y. Wu, J. Xie, S. Wu and Z. Wu, Mater. Sci. Eng. C, 86, 1 (2018); https://doi.org/10.1016/j.msec.2018.01.003
N. Saadat and S.V. Gupta, J. Oncol., 2012, 647206 (2012); https://doi.org/10.1155/2012/647206
A. Umamaheswari, S.L. Prabu, S.A. John and A. Puratchikody, Biotechnol. Rep., 29, e00595 (2021); https://doi.org/10.1016/j.btre.2021.e00595