Copyright (c) 2024 Arshi RASTOGI, BHASKAR KASHYAP, AYUSHI SAINI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhancing Liquid Crystal Properties through Nanoparticle Doping: A Mini Review
Corresponding Author(s) : Arshi Rastogi
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
Liquid crystals doped with nanoscale particles have recently acquired popularity, improving their capabilities and applications. The impact of doping metallic and metal-oxide nanoparticles as well as other nanoparticles in liquid crystals is presented in this brief review. Silver nanoparticles (Ag NPs) have an effect on phase transitions, molecular alignment and electrical properties such as threshold voltage and response time. The optical tilt and electro-optical characteristics of gold nanoparticles (Au NPs) are improved. Metal-oxide nanoparticles such as MgO, ZnO, Al2O3, CuO and SiO2 enhance dielectric properties, mitigate screening effects, increase birefringence, and reduce light leakage. Doping carbon nanotubes (CNTs) influences impedance, optical transmittance and electro-optical properties. The review aims to study the effects of nanoparticle doping on liquid crystal features such as phase transitions, molecular alignment, electrical and optical properties, dielectric behavior, and impedance. A better understanding of these modifications can lead to more applications for liquid crystal in areas such as sensors, displays, optoelectronics, and photovoltaics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Siarkowska, M. Chychlowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz and T.R. Wolinski, Beilstein J. Nanotechnol., 8, 2790 (2017); https://doi.org/10.3762%2Fbjnano.8.278
- C. Granqvist, Solar Energy Mater. Solar Cells, 99, 1 (2012); https://doi:10.1016/j.solmat.2011.08.021
- X. Xia, Z. Ku, D. Zhou, Y. Zhong, Y. Zhang, Y. Wang, M.J. Huang, J. Tu and H.J. Fan, Mater. Horizons, 3, 588 (2016); https://doi.org/10.1039/C6MH00159A
- H. Kelker, Mol. Cryst. Liq. Cryst., 21, 1 (1973); https://doi.org/10.1080/15421407308083312
- J. Prakash, S. Khan, S. Chauhan and A.M. Biradar, J. Mol. Liq., 297, 112052 (2020); https://doi.org/10.1016/j.molliq.2019.112052
- T. Vimal, S.K. Gupta, R. Katiyar, A. Srivasrava, M. Czerwinski, K, Krup, S. Kumar and R. Manohar, J. Appl. Phys., 122, 114102 (2017); https://doi.org/10.1063/1.5003247
- U.B. Singh, R. Dhar, R. Dabrowski and M.B. Panday, Liq. Cryst., 40, 774 (2013); https://doi.org/10.1080/02678292.2013.783136
- S. Kaur, S. Singh and A. Biradar, Appl. Phys. Lett., 91, 023120 (2007); https://doi.org/10.1063/1.2756136
- T. Joshi, A. Kumar, J. Prakash and A.M. Biradar, Appl. Phys. Lett., 96, 253109 (2010); https://doi.org/10.1063/1.3455325
- W. Chen, P. Chen and C. Chao, Mol. Cryst. Liq. Cryst., 507, 253 (2009); https://doi.org/10.1080/15421400903053602
- M. Veverièík, P. Bury, P. Kopèanský, M. Timko and Z. Mitróová, Procedia Eng., 192, 935 (2017); https://doi.org/10.1016/j.proeng.2017.06.161
- A. García-García, R. Vergaz, J.F. Algorri, X. Quintana and J.M. Otón, Beilstein J. Nanotechnol., 6, 396 (2015); https://doi.org/10.3762/bjnano.6.39
- G.S. Chilaya and L.N. Lisetski, Mol. Cryst. Liq. Cryst., 140, 243 (1986); https://doi.org/10.1080/00268948608080157
- N. Lebovka, T. Dadakova, L. Lysetski, O. Melezhyk, G. Puchkovska, T. Gavrilko, J. Baran and M. Drozd, J. Mol. Struct., 887, 135 (2008); https://doi.org/10.1016/j.molstruc.2007.12.038
- S.Y. Jeon, S.H. Shin,. S.J. Jeong, S.H. Lee, S.H. Jeong, Y.H. Lee, H.C. Choi and K.J. Kim, Appl. Phys. Lett., 90, 121901 (2007); http://dx.doi.org/10.1063/1.2714311
- B. Kinkead and T. Hegmann, J. Mater. Chem., 20, 448 (2010); https://doi.org/10.1039/B911641A
- J. Kumar, R.K. Gupta, S. Kumar and V. Manjuladevi, Macromol. Symp., 357, 47 (2015); https://doi.org/10.1002/masy.201400185
- R.M. Crooks, M. Zhao, L. Sun, V. Chechik and L.K. Yeung, Acc. Chem. Res., 34, 181 (2001); https://doi.org/10.1021/ar000110a
- C.L. Haynes, A.D. McFarland, L. Zhao, R.P.V. Duyne, G.C. Schatz L. Gunnarsson, J. Prikulis, B. Kasemo and M. Käll, J. Phys. Chem. B, 107, 7337 (2003); https://doi.org/10.1021/jp034234r
- X. Yan, Y. Zhou, W. Liu, S. Liu, X. Hu, W. Zhou and D. Yuan, Liq. Cryst., 47, 1131 (2020); https://doi.org/10.1080/02678292.2019.1641754
- R. Katiyar, K. Agrahari, G. Pathak, T. Vimal, G. Yadav, K.K. Panday, A.K. Mishra, A. Srivastava and R. Manohar, J. Theor. Appl. Phys., 14, 237 (2020); https://doi.org/10.1007/s40094-020-00374-5
- L. Dykman and N. Khlebtov, Chem. Soc. Rev., 41, 2256 (2012); https://doi.org/10.1039/c1cs15166e
- P. Lesiak, D. Budaszewski, K. Bednarska, M. Wójcik, P. Sobotka, M. Chychlowski and T.R. Wolinski, Proc. SPIE Non. Opt. Appl. X, 10228, 102280N (2017); https://doi.org/10.1117/12.2263978
- J.A. Rodríguez and M. Fernández-García, Synthesis, Properties and Application of Oxide Nanomaterials, Wiley-Interscience, A John Wiley & Sons Inc. (2007).
- A. Chandran, J. Prakash, K.K. Naik, A.K. Srivastava, R. Darbowski, M. Czerwinski and A.M. Biradar J. Mater. Chem. C, 2, 1844 (2014); https://doi.org/10.1039/C3TC32017K
- Q. Zhang, C. Xie, S. Zhang, A. Wang, B. Zhu, L. Wang and Z. Yang, Sens. Actuators B: Chem., 110, 370 (2005); https://doi.org/10.1016/j.snb.2005.02.017
- H.J. Zhang and H.M. Xiong, Curr. Mol. Imaging, 2, 177 (2013); https://doi.org/10.2174/22115552113029990012
- T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A.K. Srivastava, S. Singh and A.M. Biradar, J. Phys. D: Appl. Phys., 44, 315404 (2011); https://doi.org/10.1088/0022-3727/44/31/315404
- K.G. Mishra and S.J. Gupta, Adv. Appl. Sci. Res., 2, 212 (2011).
- D. Sriamulu, E.L. Reed, M. Annamalai, T.V. Venkatesan and S. Valiyaveettil, Sci. Rep., 6, 35993 (2016); https://doi.org/10.1038/srep35993
- T. Yu, K. Greish, L.D. McGill, A. Ray and H. Ghandehari, ACS Nano, 6, 2289 (2012); https://doi.org/10.1021/nn2043803
- L.O. Dolgov and O.V. Yaroshchuk, Colloid Polym. Sci., 282, 1403 (2004); https://doi.org/10.1007/s00396-004-1151-y
- A. Chaudhary, P. Malik, R. Mehra and K.K. Raina Phase Transitions 85, 244 (2012); https://doi.org/10.1080/01411594.2011.624274
- G.C. Yang, S.J. Zhang, L.J. Han and R.H. Guan, Liq. Cryst., 31 1093 (2014); https://doi.org/10.1080/02678290410001712541
- G. Yadav, K. Agrahari and R. Manohar, J. Dispers. Sci. Technol., 42, 707 (2021); https://doi.org/10.1080/01932691.2019.1710184
- C.Y. Huang, H.U. Chao-Yuan, H.C. Pan and K.Y. Lo Japanese J. Appl. Phys., 44, 8077 (2005); https://doi.org/10.1143/JJAP.44.8077
- S.K. Nayak, M. Amels-Cortes, M.M. Neidhardt, S. Beardsworth, J. Kirrese, M. Mansueto, S. Cordier, S. Laschat and Y. Molard, Chem. Commun., 52, 3127 (2016); https://doi.org/10.1039/C5CC09110A
- J. Mirzari, R. Sawatzky, A. Sharma, M. Urbanski, K. Yu, H-S. Kitzerow and T. Hegmann, Emerging Liq. Cryst. Technol. VII, 8279, 827913 (2012); https://doi.org/10.1117/12.909022
- S. Kumar and L.K. Sagar, Chem. Commun., 47, 12182 (2011); https://doi.org/10.1039/C1CC15633K
- G. Zlateva, Z. Zhelev, R. Bakalova and I. Kanno Inorg. Chem., 46, 6212 (2007); https://doi.org/10.1021/ic062045s
- K.P. Praseetha, E. Shiju, K. Chandrasekharan and S. Varghese, J. Mol. Liq., 328, 115347 (2021); https://doi.org/10.1016/j.molliq.2021.115347
- A. Kumar, J. Prakash, A.D. Deshmukh, P. Silotia and A.M. Biradar, Appl. Phys. Lett., 100, 134101 (2012); https://doi.org/10.1063/1.3698120
References
A. Siarkowska, M. Chychlowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz and T.R. Wolinski, Beilstein J. Nanotechnol., 8, 2790 (2017); https://doi.org/10.3762%2Fbjnano.8.278
C. Granqvist, Solar Energy Mater. Solar Cells, 99, 1 (2012); https://doi:10.1016/j.solmat.2011.08.021
X. Xia, Z. Ku, D. Zhou, Y. Zhong, Y. Zhang, Y. Wang, M.J. Huang, J. Tu and H.J. Fan, Mater. Horizons, 3, 588 (2016); https://doi.org/10.1039/C6MH00159A
H. Kelker, Mol. Cryst. Liq. Cryst., 21, 1 (1973); https://doi.org/10.1080/15421407308083312
J. Prakash, S. Khan, S. Chauhan and A.M. Biradar, J. Mol. Liq., 297, 112052 (2020); https://doi.org/10.1016/j.molliq.2019.112052
T. Vimal, S.K. Gupta, R. Katiyar, A. Srivasrava, M. Czerwinski, K, Krup, S. Kumar and R. Manohar, J. Appl. Phys., 122, 114102 (2017); https://doi.org/10.1063/1.5003247
U.B. Singh, R. Dhar, R. Dabrowski and M.B. Panday, Liq. Cryst., 40, 774 (2013); https://doi.org/10.1080/02678292.2013.783136
S. Kaur, S. Singh and A. Biradar, Appl. Phys. Lett., 91, 023120 (2007); https://doi.org/10.1063/1.2756136
T. Joshi, A. Kumar, J. Prakash and A.M. Biradar, Appl. Phys. Lett., 96, 253109 (2010); https://doi.org/10.1063/1.3455325
W. Chen, P. Chen and C. Chao, Mol. Cryst. Liq. Cryst., 507, 253 (2009); https://doi.org/10.1080/15421400903053602
M. Veverièík, P. Bury, P. Kopèanský, M. Timko and Z. Mitróová, Procedia Eng., 192, 935 (2017); https://doi.org/10.1016/j.proeng.2017.06.161
A. García-García, R. Vergaz, J.F. Algorri, X. Quintana and J.M. Otón, Beilstein J. Nanotechnol., 6, 396 (2015); https://doi.org/10.3762/bjnano.6.39
G.S. Chilaya and L.N. Lisetski, Mol. Cryst. Liq. Cryst., 140, 243 (1986); https://doi.org/10.1080/00268948608080157
N. Lebovka, T. Dadakova, L. Lysetski, O. Melezhyk, G. Puchkovska, T. Gavrilko, J. Baran and M. Drozd, J. Mol. Struct., 887, 135 (2008); https://doi.org/10.1016/j.molstruc.2007.12.038
S.Y. Jeon, S.H. Shin,. S.J. Jeong, S.H. Lee, S.H. Jeong, Y.H. Lee, H.C. Choi and K.J. Kim, Appl. Phys. Lett., 90, 121901 (2007); http://dx.doi.org/10.1063/1.2714311
B. Kinkead and T. Hegmann, J. Mater. Chem., 20, 448 (2010); https://doi.org/10.1039/B911641A
J. Kumar, R.K. Gupta, S. Kumar and V. Manjuladevi, Macromol. Symp., 357, 47 (2015); https://doi.org/10.1002/masy.201400185
R.M. Crooks, M. Zhao, L. Sun, V. Chechik and L.K. Yeung, Acc. Chem. Res., 34, 181 (2001); https://doi.org/10.1021/ar000110a
C.L. Haynes, A.D. McFarland, L. Zhao, R.P.V. Duyne, G.C. Schatz L. Gunnarsson, J. Prikulis, B. Kasemo and M. Käll, J. Phys. Chem. B, 107, 7337 (2003); https://doi.org/10.1021/jp034234r
X. Yan, Y. Zhou, W. Liu, S. Liu, X. Hu, W. Zhou and D. Yuan, Liq. Cryst., 47, 1131 (2020); https://doi.org/10.1080/02678292.2019.1641754
R. Katiyar, K. Agrahari, G. Pathak, T. Vimal, G. Yadav, K.K. Panday, A.K. Mishra, A. Srivastava and R. Manohar, J. Theor. Appl. Phys., 14, 237 (2020); https://doi.org/10.1007/s40094-020-00374-5
L. Dykman and N. Khlebtov, Chem. Soc. Rev., 41, 2256 (2012); https://doi.org/10.1039/c1cs15166e
P. Lesiak, D. Budaszewski, K. Bednarska, M. Wójcik, P. Sobotka, M. Chychlowski and T.R. Wolinski, Proc. SPIE Non. Opt. Appl. X, 10228, 102280N (2017); https://doi.org/10.1117/12.2263978
J.A. Rodríguez and M. Fernández-García, Synthesis, Properties and Application of Oxide Nanomaterials, Wiley-Interscience, A John Wiley & Sons Inc. (2007).
A. Chandran, J. Prakash, K.K. Naik, A.K. Srivastava, R. Darbowski, M. Czerwinski and A.M. Biradar J. Mater. Chem. C, 2, 1844 (2014); https://doi.org/10.1039/C3TC32017K
Q. Zhang, C. Xie, S. Zhang, A. Wang, B. Zhu, L. Wang and Z. Yang, Sens. Actuators B: Chem., 110, 370 (2005); https://doi.org/10.1016/j.snb.2005.02.017
H.J. Zhang and H.M. Xiong, Curr. Mol. Imaging, 2, 177 (2013); https://doi.org/10.2174/22115552113029990012
T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A.K. Srivastava, S. Singh and A.M. Biradar, J. Phys. D: Appl. Phys., 44, 315404 (2011); https://doi.org/10.1088/0022-3727/44/31/315404
K.G. Mishra and S.J. Gupta, Adv. Appl. Sci. Res., 2, 212 (2011).
D. Sriamulu, E.L. Reed, M. Annamalai, T.V. Venkatesan and S. Valiyaveettil, Sci. Rep., 6, 35993 (2016); https://doi.org/10.1038/srep35993
T. Yu, K. Greish, L.D. McGill, A. Ray and H. Ghandehari, ACS Nano, 6, 2289 (2012); https://doi.org/10.1021/nn2043803
L.O. Dolgov and O.V. Yaroshchuk, Colloid Polym. Sci., 282, 1403 (2004); https://doi.org/10.1007/s00396-004-1151-y
A. Chaudhary, P. Malik, R. Mehra and K.K. Raina Phase Transitions 85, 244 (2012); https://doi.org/10.1080/01411594.2011.624274
G.C. Yang, S.J. Zhang, L.J. Han and R.H. Guan, Liq. Cryst., 31 1093 (2014); https://doi.org/10.1080/02678290410001712541
G. Yadav, K. Agrahari and R. Manohar, J. Dispers. Sci. Technol., 42, 707 (2021); https://doi.org/10.1080/01932691.2019.1710184
C.Y. Huang, H.U. Chao-Yuan, H.C. Pan and K.Y. Lo Japanese J. Appl. Phys., 44, 8077 (2005); https://doi.org/10.1143/JJAP.44.8077
S.K. Nayak, M. Amels-Cortes, M.M. Neidhardt, S. Beardsworth, J. Kirrese, M. Mansueto, S. Cordier, S. Laschat and Y. Molard, Chem. Commun., 52, 3127 (2016); https://doi.org/10.1039/C5CC09110A
J. Mirzari, R. Sawatzky, A. Sharma, M. Urbanski, K. Yu, H-S. Kitzerow and T. Hegmann, Emerging Liq. Cryst. Technol. VII, 8279, 827913 (2012); https://doi.org/10.1117/12.909022
S. Kumar and L.K. Sagar, Chem. Commun., 47, 12182 (2011); https://doi.org/10.1039/C1CC15633K
G. Zlateva, Z. Zhelev, R. Bakalova and I. Kanno Inorg. Chem., 46, 6212 (2007); https://doi.org/10.1021/ic062045s
K.P. Praseetha, E. Shiju, K. Chandrasekharan and S. Varghese, J. Mol. Liq., 328, 115347 (2021); https://doi.org/10.1016/j.molliq.2021.115347
A. Kumar, J. Prakash, A.D. Deshmukh, P. Silotia and A.M. Biradar, Appl. Phys. Lett., 100, 134101 (2012); https://doi.org/10.1063/1.3698120