Copyright (c) 2024 Tharani S
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sustainable Synthesis of Porous Biomass-Derived Carbon from Tecoma capensis for High Performance Supercapacitors: Characterization and Electrochemical Evaluation
Corresponding Author(s) : S. Tharani
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
Biowaste carbon products possess interesting physico-chemical properties and are cost-effective due to their remarkable characteristics. Biomass carbon derived from Tecoma capensis (TCL) was processed using pyrolysis at a controlled temperature in an eco-friendly, innovative and sustainable way to develop biomass-derived carbon material. The aim of this study is to demonstrate the facile synthesis of porous carbon compounds from biowaste and evaluate their use in supercapacitors. Various analytical methods, such as structural analysis, morphological studies and electrochemical studies, have been employed to characterize the carbon material generated from biomass. Electrochemical performance evaluation was conducted through cyclic voltammetry and galvanostatic charge-discharge studies utilizing 1 M H2SO4 and 1 M KOH aqueous electrolyte, which exhibited a specific capacitance of 238 F g-1. The outcomes of the studies suggested that the eco-friendly, straightforward process can be utilized to prepare biomass carbon for the electrochemical energy storage applications in an efficient and sustainable manner.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Zhong, H. Zhu, L. Yang, X. Chi, W. Tan and W. Weng, J. Mater. Chem. A Mater. Energy Sustain., 11, 8101 (2023); https://doi.org/10.1039/D3TA00367A
- J. Zhou, H. Xiao, W. Weng, D. Gu and W. Xiao, J. Energy Chem., 50, 280 (2020); https://doi.org/10.1016/j.jechem.2020.03.048
- X. Chen, H. Zhao, J. Qu, D. Tang, Z. Zhao, H. Xie, D. Wang and H. Yin, Green Chem., 22, 7946 (2020); https://doi.org/10.1039/D0GC02626C
- W. Weng, B. Jiang, Z. Wang and W. Xiao, Sci. Adv., 6, 9278 (2020); https://doi.org/10.1126/sciadv.aay9278
- Y. Gogotsi, ACS Nano, 8, 5369 (2014); https://doi.org/10.1021/nn503164x
- G. Kothandam, G. Singh, X. Guan, J.M. Lee, K. Ramadass, S. Joseph, M. Benzigar, A. Karakoti, J. Yi, P. Kumar and A. Vinu, Adv. Sci., 10, 2301045 (2023); https://doi.org/10.1002/advs.202301045
- W. Weng, S. Wang, W. Xiao and X.W.D. Lou, Adv. Mater., 32, 2001560 (2020); https://doi.org/10.1002/adma.202001560
- T. Jiang, Y. Wang and G.Z. Chen, Small Methods, 7, 2201724 (2023); https://doi.org/10.1002/smtd.202201724
- A.T. Prasannakumar, R.R. Mohan, R. Rohith, V. Manju and S.J. Varma, ChemistrySelect, 8, 202203564 (2023); https://doi.org/10.1002/slct.202203564
- J. Hao, L. Yan, X. Zou, Y. Bai, Y. Han, C. Zhu, Y. Zhou and B. Xiang, Small, 19, 2300467 (2023); https://doi.org/10.1002/smll.202300467
- P. Simon, Y. Gogotsi and B. Dunn, Science, 343, 1210 (2014); https://doi.org/10.1126/science.1249625
- Z. Qiu, Z. Liu, X. Lu, S. Zhang, Y. Yan, C. Chi, C. Huangfu, G. Wang, P. Gao, W. Chi, Z. Xu, T. Wei and Z. Fan, Small, 19, 2302316 (2023); https://doi.org/10.1002/smll.202302316
- Y. Guan, Y. Cong, R. Zhao, K. Li, X. Li, H. Zhu, Q. Zhang, Z. Dong and N. Yang, Small, 19, 2301276 (2023); https://doi.org/10.1002/smll.202301276
- Q. Zhang, Y. He, G. Lin, X. Ma, Z. Xiao, D. Shi and Y. Yang, J. Mater. Chem. A Mater. Energy Sustain., 9, 10652 (2021); https://doi.org/10.1039/D1TA00302J
- X. Li, W. Li, Q. Liu, S. Chen, L. Wang, F. Gao, G. Shao, Y. Tian, Z. Lin and W. Yang, Adv. Funct. Mater., 31, 2008901 (2021); https://doi.org/10.1002/adfm.202008901
- J. Cao, J. Luo, P. Wang, X. Wang and W. Weng, Mater. Technol., 35, 522 (2020); https://doi.org/10.1080/10667857.2019.1699270
- Y. Cheng, L. Wu, C. Fang, T. Li, J. Chen, M. Yang and Q. Zhang, J. Mater. Res. Technol., 9, 3261 (2020); https://doi.org/10.1016/j.jmrt.2020.01.022
- C. Zhang, X. Liu, Z. Li, C. Zhang, Z. Chen, D. Pan and M. Wu, Adv. Funct. Mater., 31, 2101470 (2021); https://doi.org/10.1002/adfm.202101470
- D. Cao, Q. Li, X. Sun, Y. Wang, X. Zhao, E. Cakmak, W. Liang, A. Anderson, S. Ozcan and H. Zhu, Adv. Mater., 33, 2105505 (2021); https://doi.org/10.1002/adma.202105505
- Q. Li, D. Cao, M.T. Naik, Y. Pu, X. Sun, P. Luan, A.J. Ragauskas, T. Ji, Y. Zhao, F. Chen, Y. Zheng and H. Zhu, ACS Sustain. Chem. Eng., 10, 8704 (2022); https://doi.org/10.1021/acssuschemeng.2c00783
- Q. Li, X. Sun, D. Cao, Y. Wang, P. Luan and H. Zhu, Electrochem. Energy Rev., 5, 18 (2022); https://doi.org/10.1007/s41918-022-00170-6
- X. Sun, Q. Li, D. Cao, Y. Wang, A. Anderson and H. Zhu, Small, 18, 2105678 (2022); https://doi.org/10.1002/smll.202105678
- S.R.A. Sasono, M.F. Rois, W. Widiyastuti, T. Nurtono and H. Setyawan, Results Eng., 18, 101070 (2023); https://doi.org/10.1016/j.rineng.2023.101070
- S.M. Omokafe, A.A. Adeniyi, E.O. Igbafen, S.R. Oke and P.A. Olubambi, Int. J. Electrochem. Sci., 15, 10854 (2020); https://doi.org/10.20964/2020.11.10
- K.C. Lee, M.S.W. Lim, Z.Y. Hong, S. Chong, T.J. Tiong, G.T. Pan and C.M. Huang, Energies, 14, 4546 (2021); https://doi.org/10.3390/en14154546
- M.F.M. Yusop, E.M.J. Jaya, A.T. Mohd Din, O.S. Bello and M.A. Ahmad, Chem. Eng. Technol., 45, 1943 (2022); https://doi.org/10.1002/ceat.202200051
- Z. Yang, G. Yan, X. Liu, Z. Feng, X. Zhu, Y. Mao, S. Chen, Z. Yu, R. Fan and L. Shan, J. Renew. Mater., 10, 3573 (2022); https://doi.org/10.32604/jrm.2022.022031
- Y. Tan, Y. Ren, Z. Xu, Y. Zhu and H. Li, J. Electron. Mater., 52, 2603 (2023); https://doi.org/10.1007/s11664-023-10223-1
- B. Shaku, T.P. Mofokeng, N.J. Coville, K.I. Ozoemena and M.S. Maubane-Nkadimeng, Electrochim. Acta, 442, 141828 (2023); https://doi.org/10.1016/j.electacta.2023.141828
- G. Dhakal, D. Mohapatra, Y.I. Kim, J. Lee, W.K. Kim and J.J. Shim, Renew. Energy, 189, 587 (2022); https://doi.org/10.1016/j.renene.2022.01.105
- P. Ozpinar, C. Dogan, H. Demiral, U. Morali, S. Erol, C. Samdan, D. Yildiz and I. Demiral, Renew. Energy, 189, 535 (2022); https://doi.org/10.1016/j.renene.2022.02.126
- X. Xu, K. Sielicki, J. Min, J. Li, C. Hao, X. Wen, X. Chen and E. Mijowska, Renew. Energy, 185, 187 (2022); https://doi.org/10.1016/j.renene.2021.12.040
- M. Biswal, A. Banerjee, M. Deo and S. Ogale, Energy Environ. Sci., 6, 1249 (2013); https://doi.org/10.1039/c3ee22325f
- G. Byatarayappa, V. Guna, R.M. G, K. Venkatesh, Y. Zhao, N. N, N. Reddy and K. Nagaraju, Sustain. Energy Fuels, 6, 4034 (2022); https://doi.org/10.1039/D2SE00802E
- I. Kavya, D.S. Kumar, D. Sandhya, P. Janaki and M.C. Eswaraiah, Indian J. Res. Pharm. Biotechnol., 3, 410 (2015).
- S.N. Kumar and N. Thampi, J. Chem. Pharm. Res., 7, 840 (2015).
- N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja and M. Sathish, Energy Fuels, 31, 977 (2017); https://doi.org/10.1021/acs.energyfuels.6b01829
- X. Ma, H. Wang, Q. Wu, J. Zhang, D. Liang, S. Lu and Y. Xiang, J. Electrochem. Soc., 166, A236 (2019); https://doi.org/10.1149/2.0831902jes
- N. Katagiri, N. Adachi and T. Ota, J. Ceram. Soc. Jpn., 122, 29 (2014); https://doi.org/10.2109/jcersj2.122.29
- D. Wang, Y. Min and Y. Yu, J. Solid State Electrochem., 19, 577 (2015); https://doi.org/10.1007/s10008-014-2639-0
- F. Giannazzo, R. Dagher, E. Schilirò, S.E. Panasci, F. Roccaforte, G. Greco, G. Nicotra,S. Agnello, J. Brault, Y. Cordier and A. Michon, Nanotechnology, 32, 015705 (2021); https://doi.org/10.1088/1361-6528/abb72b
- P. Divya and R. Rajalakshmi, Mater. Today Proc., 27, 44 (2020); https://doi.org/10.1016/j.matpr.2019.08.200
- C. Pituello, O. Francioso, G. Simonetti, A. Pisi, A. Torreggiani, A. Berti and F. Morari, J. Soils Sediments, 15, 792 (2015); https://doi.org/10.1007/s11368-014-0964-7
- P. Fu, S. Hu, J. Xinag, L. Sun, T. Yang, A. Zhang, Yi Wang and G. Chen, 2009 International Conference on Energy and Environment Technology, Guilin, China, pp. 109-112 (2009); https://doi.org/10.1109/ICEET.2009.33
- S. Suman and S. Gautam, Energy Sources A Recovery Util. Environ. Effects, 39, 761 (2017); https://doi.org/10.1080/15567036.2016.1263252
- S. Suman, D.S. Panwar and S. Gautam, Energy Sources A Recovery Util. Environ. Effects, 39, 1007 (2017); https://doi.org/10.1080/15567036.2017.1283553
- S. Tharani, ECS Trans., 107, 14433 (2022); https://doi.org/10.1149/10701.14433ecst
- A. Khan, R. Arumugam Senthil, J. Pan, Y. Sun and X. Liu, Batter. Supercaps, 3, 731 (2020); https://doi.org/10.1002/batt.202000046
- S. Palanisamy, S.K. Kandasamy, S. Thangmuthu, D.K. Selvarasu, M. Panchanathan, P.V. Ramanai and B.S. Gevert, J. Mater. Sci. Mater. Electron., 32, 25175 (2021); https://doi.org/10.1007/s10854-021-06974-4
References
S. Zhong, H. Zhu, L. Yang, X. Chi, W. Tan and W. Weng, J. Mater. Chem. A Mater. Energy Sustain., 11, 8101 (2023); https://doi.org/10.1039/D3TA00367A
J. Zhou, H. Xiao, W. Weng, D. Gu and W. Xiao, J. Energy Chem., 50, 280 (2020); https://doi.org/10.1016/j.jechem.2020.03.048
X. Chen, H. Zhao, J. Qu, D. Tang, Z. Zhao, H. Xie, D. Wang and H. Yin, Green Chem., 22, 7946 (2020); https://doi.org/10.1039/D0GC02626C
W. Weng, B. Jiang, Z. Wang and W. Xiao, Sci. Adv., 6, 9278 (2020); https://doi.org/10.1126/sciadv.aay9278
Y. Gogotsi, ACS Nano, 8, 5369 (2014); https://doi.org/10.1021/nn503164x
G. Kothandam, G. Singh, X. Guan, J.M. Lee, K. Ramadass, S. Joseph, M. Benzigar, A. Karakoti, J. Yi, P. Kumar and A. Vinu, Adv. Sci., 10, 2301045 (2023); https://doi.org/10.1002/advs.202301045
W. Weng, S. Wang, W. Xiao and X.W.D. Lou, Adv. Mater., 32, 2001560 (2020); https://doi.org/10.1002/adma.202001560
T. Jiang, Y. Wang and G.Z. Chen, Small Methods, 7, 2201724 (2023); https://doi.org/10.1002/smtd.202201724
A.T. Prasannakumar, R.R. Mohan, R. Rohith, V. Manju and S.J. Varma, ChemistrySelect, 8, 202203564 (2023); https://doi.org/10.1002/slct.202203564
J. Hao, L. Yan, X. Zou, Y. Bai, Y. Han, C. Zhu, Y. Zhou and B. Xiang, Small, 19, 2300467 (2023); https://doi.org/10.1002/smll.202300467
P. Simon, Y. Gogotsi and B. Dunn, Science, 343, 1210 (2014); https://doi.org/10.1126/science.1249625
Z. Qiu, Z. Liu, X. Lu, S. Zhang, Y. Yan, C. Chi, C. Huangfu, G. Wang, P. Gao, W. Chi, Z. Xu, T. Wei and Z. Fan, Small, 19, 2302316 (2023); https://doi.org/10.1002/smll.202302316
Y. Guan, Y. Cong, R. Zhao, K. Li, X. Li, H. Zhu, Q. Zhang, Z. Dong and N. Yang, Small, 19, 2301276 (2023); https://doi.org/10.1002/smll.202301276
Q. Zhang, Y. He, G. Lin, X. Ma, Z. Xiao, D. Shi and Y. Yang, J. Mater. Chem. A Mater. Energy Sustain., 9, 10652 (2021); https://doi.org/10.1039/D1TA00302J
X. Li, W. Li, Q. Liu, S. Chen, L. Wang, F. Gao, G. Shao, Y. Tian, Z. Lin and W. Yang, Adv. Funct. Mater., 31, 2008901 (2021); https://doi.org/10.1002/adfm.202008901
J. Cao, J. Luo, P. Wang, X. Wang and W. Weng, Mater. Technol., 35, 522 (2020); https://doi.org/10.1080/10667857.2019.1699270
Y. Cheng, L. Wu, C. Fang, T. Li, J. Chen, M. Yang and Q. Zhang, J. Mater. Res. Technol., 9, 3261 (2020); https://doi.org/10.1016/j.jmrt.2020.01.022
C. Zhang, X. Liu, Z. Li, C. Zhang, Z. Chen, D. Pan and M. Wu, Adv. Funct. Mater., 31, 2101470 (2021); https://doi.org/10.1002/adfm.202101470
D. Cao, Q. Li, X. Sun, Y. Wang, X. Zhao, E. Cakmak, W. Liang, A. Anderson, S. Ozcan and H. Zhu, Adv. Mater., 33, 2105505 (2021); https://doi.org/10.1002/adma.202105505
Q. Li, D. Cao, M.T. Naik, Y. Pu, X. Sun, P. Luan, A.J. Ragauskas, T. Ji, Y. Zhao, F. Chen, Y. Zheng and H. Zhu, ACS Sustain. Chem. Eng., 10, 8704 (2022); https://doi.org/10.1021/acssuschemeng.2c00783
Q. Li, X. Sun, D. Cao, Y. Wang, P. Luan and H. Zhu, Electrochem. Energy Rev., 5, 18 (2022); https://doi.org/10.1007/s41918-022-00170-6
X. Sun, Q. Li, D. Cao, Y. Wang, A. Anderson and H. Zhu, Small, 18, 2105678 (2022); https://doi.org/10.1002/smll.202105678
S.R.A. Sasono, M.F. Rois, W. Widiyastuti, T. Nurtono and H. Setyawan, Results Eng., 18, 101070 (2023); https://doi.org/10.1016/j.rineng.2023.101070
S.M. Omokafe, A.A. Adeniyi, E.O. Igbafen, S.R. Oke and P.A. Olubambi, Int. J. Electrochem. Sci., 15, 10854 (2020); https://doi.org/10.20964/2020.11.10
K.C. Lee, M.S.W. Lim, Z.Y. Hong, S. Chong, T.J. Tiong, G.T. Pan and C.M. Huang, Energies, 14, 4546 (2021); https://doi.org/10.3390/en14154546
M.F.M. Yusop, E.M.J. Jaya, A.T. Mohd Din, O.S. Bello and M.A. Ahmad, Chem. Eng. Technol., 45, 1943 (2022); https://doi.org/10.1002/ceat.202200051
Z. Yang, G. Yan, X. Liu, Z. Feng, X. Zhu, Y. Mao, S. Chen, Z. Yu, R. Fan and L. Shan, J. Renew. Mater., 10, 3573 (2022); https://doi.org/10.32604/jrm.2022.022031
Y. Tan, Y. Ren, Z. Xu, Y. Zhu and H. Li, J. Electron. Mater., 52, 2603 (2023); https://doi.org/10.1007/s11664-023-10223-1
B. Shaku, T.P. Mofokeng, N.J. Coville, K.I. Ozoemena and M.S. Maubane-Nkadimeng, Electrochim. Acta, 442, 141828 (2023); https://doi.org/10.1016/j.electacta.2023.141828
G. Dhakal, D. Mohapatra, Y.I. Kim, J. Lee, W.K. Kim and J.J. Shim, Renew. Energy, 189, 587 (2022); https://doi.org/10.1016/j.renene.2022.01.105
P. Ozpinar, C. Dogan, H. Demiral, U. Morali, S. Erol, C. Samdan, D. Yildiz and I. Demiral, Renew. Energy, 189, 535 (2022); https://doi.org/10.1016/j.renene.2022.02.126
X. Xu, K. Sielicki, J. Min, J. Li, C. Hao, X. Wen, X. Chen and E. Mijowska, Renew. Energy, 185, 187 (2022); https://doi.org/10.1016/j.renene.2021.12.040
M. Biswal, A. Banerjee, M. Deo and S. Ogale, Energy Environ. Sci., 6, 1249 (2013); https://doi.org/10.1039/c3ee22325f
G. Byatarayappa, V. Guna, R.M. G, K. Venkatesh, Y. Zhao, N. N, N. Reddy and K. Nagaraju, Sustain. Energy Fuels, 6, 4034 (2022); https://doi.org/10.1039/D2SE00802E
I. Kavya, D.S. Kumar, D. Sandhya, P. Janaki and M.C. Eswaraiah, Indian J. Res. Pharm. Biotechnol., 3, 410 (2015).
S.N. Kumar and N. Thampi, J. Chem. Pharm. Res., 7, 840 (2015).
N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja and M. Sathish, Energy Fuels, 31, 977 (2017); https://doi.org/10.1021/acs.energyfuels.6b01829
X. Ma, H. Wang, Q. Wu, J. Zhang, D. Liang, S. Lu and Y. Xiang, J. Electrochem. Soc., 166, A236 (2019); https://doi.org/10.1149/2.0831902jes
N. Katagiri, N. Adachi and T. Ota, J. Ceram. Soc. Jpn., 122, 29 (2014); https://doi.org/10.2109/jcersj2.122.29
D. Wang, Y. Min and Y. Yu, J. Solid State Electrochem., 19, 577 (2015); https://doi.org/10.1007/s10008-014-2639-0
F. Giannazzo, R. Dagher, E. Schilirò, S.E. Panasci, F. Roccaforte, G. Greco, G. Nicotra,S. Agnello, J. Brault, Y. Cordier and A. Michon, Nanotechnology, 32, 015705 (2021); https://doi.org/10.1088/1361-6528/abb72b
P. Divya and R. Rajalakshmi, Mater. Today Proc., 27, 44 (2020); https://doi.org/10.1016/j.matpr.2019.08.200
C. Pituello, O. Francioso, G. Simonetti, A. Pisi, A. Torreggiani, A. Berti and F. Morari, J. Soils Sediments, 15, 792 (2015); https://doi.org/10.1007/s11368-014-0964-7
P. Fu, S. Hu, J. Xinag, L. Sun, T. Yang, A. Zhang, Yi Wang and G. Chen, 2009 International Conference on Energy and Environment Technology, Guilin, China, pp. 109-112 (2009); https://doi.org/10.1109/ICEET.2009.33
S. Suman and S. Gautam, Energy Sources A Recovery Util. Environ. Effects, 39, 761 (2017); https://doi.org/10.1080/15567036.2016.1263252
S. Suman, D.S. Panwar and S. Gautam, Energy Sources A Recovery Util. Environ. Effects, 39, 1007 (2017); https://doi.org/10.1080/15567036.2017.1283553
S. Tharani, ECS Trans., 107, 14433 (2022); https://doi.org/10.1149/10701.14433ecst
A. Khan, R. Arumugam Senthil, J. Pan, Y. Sun and X. Liu, Batter. Supercaps, 3, 731 (2020); https://doi.org/10.1002/batt.202000046
S. Palanisamy, S.K. Kandasamy, S. Thangmuthu, D.K. Selvarasu, M. Panchanathan, P.V. Ramanai and B.S. Gevert, J. Mater. Sci. Mater. Electron., 32, 25175 (2021); https://doi.org/10.1007/s10854-021-06974-4