Copyright (c) 2024 Ruzniza Zawawi
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Green Method of Reducing Graphene Oxide by Tangerine Peel Extract
Corresponding Author(s) : Ruzniza Mohd Zawawi
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
This work introduces a simple and environmental friendly approach for synthesizing reduced graphene oxide using tangerine peel extract as a non-toxic alternative to toxic compounds. Various microscopic and spectroscopic techniques were used to characterize the synthesized reduced graphene oxide. The UV-visible spectra of reduced graphene oxide (287 nm) at specific wavelengths and the FTIR analysis showed that the oxygen groups in reduced graphene oxide were reduced. Raman analysis confirmed a small increase in the intensity ratio of the D-band to the G-band. The X-ray diffraction spectra showed the presence of reduced graphene oxide in the 2θ angle, at 28.36º peak with a d-spacing value of 2.12 nm. The wettability and morphology of reduced graphene oxide were also investigated. The carbon-to-oxygen ratio of reduced graphene oxide was increased compared to graphene oxide in addition, the cyclic voltammetry was used to evaluate the electrochemical behaviour of the reduced graphene oxide.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Maeda and H. Hibino, Diamond Related Materials, 34, 84 (2013); https://doi.org/10.1016/j.diamond.2013.02.007
- M. Cossutta, J. McKechnie and S.J. Pickering, Green Chem., 17, 5874 (2017); https://doi.org/10.1039/C7GC02444D
- G.B. Mahendran, S.J. Ramalingam, J. Rayappan, S. Kesavan, T. Periathambi and N. Nesakumar, J. Mater. Sci. Mater. Electron., 31, 14345 (2020); https://doi.org/10.1007/s10854-020-03994-4
- S. Thakur and N. Karak, Carbon, 50, 5331 (2012); https://doi.org/10.1016/j.carbon.2012.07.023
- M.Z. Ansari, R. Johari and W.A. Siddiqi, Mater. Res. Express, 6, 055027 (2019); https://doi.org/10.1088/2053-1591/ab0439
- D. Perumal, E. Albert, N. Saad, T. Hin, R.M. Zawawi, H. Teh and C.C. Abdullah, Crystals, 11, 1539 (2022); https://doi.org/10.3390/cryst12111539
- K.K.H. De Silva, H.-H. Huang, R.K. Joshi and M. Yoshimura, Carbon, 119, 190 (2017); https://doi.org/10.1016/j.carbon.2017.04.025
- Q. He and K. Xiao, Food Control, 69, 339 (2016); https://doi.org/10.1016/j.foodcont.2016.05.019
- B. Haghighi, and, M.A. Tabrizi, RSC Adv., 32, 13365 (2013); https://doi.org/10.1039/C3RA40856F
- P.C. Nethravathi, G.S. Shruthi, Udayabhanu, H. Nagabhushana, D. Suresh and S.C. Sharma, Ceram. Int., 41, 8680 (2015); https://doi.org/10.1016/j.ceramint.2015.03.084
- S. Mahata, A. Sahu, P. Shukla, A. Rai, M. Singh and V.K. Rai, New J. Chem., 42, 19945 (2018); https://doi.org/10.1039/C8NJ04086A
- A. Baioun, H. Kellawi and A. Falah, Carbon Lett., 24, 47 (2017); https://doi.org/10.5714/CL.2017.24.047
- X. Jin, N. Li, X. Weng, C. Li and Z. Chen, Chemosphere, 208, 417 (2018); https://doi.org/10.1016/j.chemosphere.2018.05.199
- M.S.A. Faiz, C.A.C. Azurahanim, S.A. Raba’ah and M.Z. Ruzniza, Results Phys., 16, 102954 (2020); https://doi.org/10.1016/j.rinp.2020.102954
- D.R. Madhuri, K. Kavyashree, A.R. Lamani, H.S. Jayanna, G. Nagaraju and S. Mundinamani, Mater. Today Proc., 49, 865 (2022); https://doi.org/10.1016/j.matpr.2021.06.173
- A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri and H. Li, Materials, 15, 1012 (2022); https://doi.org/10.3390/ma15031012
- O. Moradi and S. Panahandeh, Environ. Res., 214, 114042 (2022); https://doi.org/10.1016/j.envres.2022.114042
- Q. Xu, X. Lin, L. Gan, G. Owens and Z. Chen, J. Colloid Interface Sci., 605, 881 (2022); https://doi.org/10.1016/j.jcis.2021.07.102
- S. Shamaila, A.K.L. Sajjad, Quart-ul-Ain, S. Shaheen, A. Iqbal, S. Noor, G. Sughra and U. Ali, J. Environ. Chem. Eng., 5, 5770 (2017); https://doi.org/10.1016/j.jece.2017.11.009
- W. Liu, Z. Wang, W. Yan, Z. Zhao, L. Shi, L. Huang, Y. Liu, X. He and S. Cui, Carbon, 202, 389 (2023); https://doi.org/10.1016/j.carbon.2022.11.001
- L.G. Cançado, A. Reina, J. Kong and M.S. Dresselhaus, Phys. Rev. B, 77, 245408 (2008); https://doi.org/10.1103/PhysRevB.77.245408
- M. Mahiuddin and B. Ochiai, Mater. Today Sustain., 22, 100383 (2023); https://doi.org/10.1016/j.mtsust.2023.100383
- P. Rajapaksha, R. Orrell-Trigg, D. Shah, S. Cheeseman, K.B. Vu, S.T. Ngo, B.J. Murdoch, N.R. Choudhury, H. Yin, D. Cozzolino, Y.B. Truong, A.F. Lee, V.K. Truong and J. Chapman, Mater. Today Chem., 27, 101242 (2023); https://doi.org/10.1016/j.mtchem.2022.101242
- L.A. Belyaeva and G.F. Schneider, Surf. Sci. Rep., 75, 100482 (2020); https://doi.org/10.1016/j.surfrep.2020.100482
- J. Feng and Z. Guo, Nanoscale Horiz., 4, 339 (2019); https://doi.org/10.1039/C8NH00348C
- B. Li, X. Jin, J. Lin and Z. Chen, J. Clean. Prod., 189, 128 (2018); https://doi.org/10.1016/j.jclepro.2018.04.018
- S. Nasir, M.Z. Hussein, N.A. Yusof and Z. Zainal, Nanomaterials, 7, 182 (2017); https://doi.org/10.3390/nano7070182
- N.A. Edris, J. Abdullah, S. Kamaruzaman, M.I. Saiman and Y. Sulaiman, Arab. J. Chem., 11, 1301 (2018); https://doi.org/10.1016/j.arabjc.2018.09.002
- N.I.A.M. Mokhtar, S.E. Ashari and R.M. Zawawi, RSC Adv., 13, 13493 (2023); https://doi.org/10.1039/D3RA01060K
- L. Shahriary and A.A. Athawale, Energy Environ. Eng., 2, 58 (2014).
- M.J. Song, S.W. Hwang and D. Whang, J. Appl. Electrochem., 10, 2099 (2010); https://doi.org/10.1007/s10800-010-0191-x
- S.J. Konopka and B. Mcduffie, Anal. Chem., 42, 1741 (1970); https://doi.org/10.1021/ac50160a042
- S. Yang, G. Li, N. Xia, Y. Wang, P. Liu and L. Qu, J. Alloys Compd., 853, 157077 (2021); https://doi.org/10.1016/j.jallcom.2020.157077
References
F. Maeda and H. Hibino, Diamond Related Materials, 34, 84 (2013); https://doi.org/10.1016/j.diamond.2013.02.007
M. Cossutta, J. McKechnie and S.J. Pickering, Green Chem., 17, 5874 (2017); https://doi.org/10.1039/C7GC02444D
G.B. Mahendran, S.J. Ramalingam, J. Rayappan, S. Kesavan, T. Periathambi and N. Nesakumar, J. Mater. Sci. Mater. Electron., 31, 14345 (2020); https://doi.org/10.1007/s10854-020-03994-4
S. Thakur and N. Karak, Carbon, 50, 5331 (2012); https://doi.org/10.1016/j.carbon.2012.07.023
M.Z. Ansari, R. Johari and W.A. Siddiqi, Mater. Res. Express, 6, 055027 (2019); https://doi.org/10.1088/2053-1591/ab0439
D. Perumal, E. Albert, N. Saad, T. Hin, R.M. Zawawi, H. Teh and C.C. Abdullah, Crystals, 11, 1539 (2022); https://doi.org/10.3390/cryst12111539
K.K.H. De Silva, H.-H. Huang, R.K. Joshi and M. Yoshimura, Carbon, 119, 190 (2017); https://doi.org/10.1016/j.carbon.2017.04.025
Q. He and K. Xiao, Food Control, 69, 339 (2016); https://doi.org/10.1016/j.foodcont.2016.05.019
B. Haghighi, and, M.A. Tabrizi, RSC Adv., 32, 13365 (2013); https://doi.org/10.1039/C3RA40856F
P.C. Nethravathi, G.S. Shruthi, Udayabhanu, H. Nagabhushana, D. Suresh and S.C. Sharma, Ceram. Int., 41, 8680 (2015); https://doi.org/10.1016/j.ceramint.2015.03.084
S. Mahata, A. Sahu, P. Shukla, A. Rai, M. Singh and V.K. Rai, New J. Chem., 42, 19945 (2018); https://doi.org/10.1039/C8NJ04086A
A. Baioun, H. Kellawi and A. Falah, Carbon Lett., 24, 47 (2017); https://doi.org/10.5714/CL.2017.24.047
X. Jin, N. Li, X. Weng, C. Li and Z. Chen, Chemosphere, 208, 417 (2018); https://doi.org/10.1016/j.chemosphere.2018.05.199
M.S.A. Faiz, C.A.C. Azurahanim, S.A. Raba’ah and M.Z. Ruzniza, Results Phys., 16, 102954 (2020); https://doi.org/10.1016/j.rinp.2020.102954
D.R. Madhuri, K. Kavyashree, A.R. Lamani, H.S. Jayanna, G. Nagaraju and S. Mundinamani, Mater. Today Proc., 49, 865 (2022); https://doi.org/10.1016/j.matpr.2021.06.173
A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri and H. Li, Materials, 15, 1012 (2022); https://doi.org/10.3390/ma15031012
O. Moradi and S. Panahandeh, Environ. Res., 214, 114042 (2022); https://doi.org/10.1016/j.envres.2022.114042
Q. Xu, X. Lin, L. Gan, G. Owens and Z. Chen, J. Colloid Interface Sci., 605, 881 (2022); https://doi.org/10.1016/j.jcis.2021.07.102
S. Shamaila, A.K.L. Sajjad, Quart-ul-Ain, S. Shaheen, A. Iqbal, S. Noor, G. Sughra and U. Ali, J. Environ. Chem. Eng., 5, 5770 (2017); https://doi.org/10.1016/j.jece.2017.11.009
W. Liu, Z. Wang, W. Yan, Z. Zhao, L. Shi, L. Huang, Y. Liu, X. He and S. Cui, Carbon, 202, 389 (2023); https://doi.org/10.1016/j.carbon.2022.11.001
L.G. Cançado, A. Reina, J. Kong and M.S. Dresselhaus, Phys. Rev. B, 77, 245408 (2008); https://doi.org/10.1103/PhysRevB.77.245408
M. Mahiuddin and B. Ochiai, Mater. Today Sustain., 22, 100383 (2023); https://doi.org/10.1016/j.mtsust.2023.100383
P. Rajapaksha, R. Orrell-Trigg, D. Shah, S. Cheeseman, K.B. Vu, S.T. Ngo, B.J. Murdoch, N.R. Choudhury, H. Yin, D. Cozzolino, Y.B. Truong, A.F. Lee, V.K. Truong and J. Chapman, Mater. Today Chem., 27, 101242 (2023); https://doi.org/10.1016/j.mtchem.2022.101242
L.A. Belyaeva and G.F. Schneider, Surf. Sci. Rep., 75, 100482 (2020); https://doi.org/10.1016/j.surfrep.2020.100482
J. Feng and Z. Guo, Nanoscale Horiz., 4, 339 (2019); https://doi.org/10.1039/C8NH00348C
B. Li, X. Jin, J. Lin and Z. Chen, J. Clean. Prod., 189, 128 (2018); https://doi.org/10.1016/j.jclepro.2018.04.018
S. Nasir, M.Z. Hussein, N.A. Yusof and Z. Zainal, Nanomaterials, 7, 182 (2017); https://doi.org/10.3390/nano7070182
N.A. Edris, J. Abdullah, S. Kamaruzaman, M.I. Saiman and Y. Sulaiman, Arab. J. Chem., 11, 1301 (2018); https://doi.org/10.1016/j.arabjc.2018.09.002
N.I.A.M. Mokhtar, S.E. Ashari and R.M. Zawawi, RSC Adv., 13, 13493 (2023); https://doi.org/10.1039/D3RA01060K
L. Shahriary and A.A. Athawale, Energy Environ. Eng., 2, 58 (2014).
M.J. Song, S.W. Hwang and D. Whang, J. Appl. Electrochem., 10, 2099 (2010); https://doi.org/10.1007/s10800-010-0191-x
S.J. Konopka and B. Mcduffie, Anal. Chem., 42, 1741 (1970); https://doi.org/10.1021/ac50160a042
S. Yang, G. Li, N. Xia, Y. Wang, P. Liu and L. Qu, J. Alloys Compd., 853, 157077 (2021); https://doi.org/10.1016/j.jallcom.2020.157077