Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Biological Studies of Novel Biodegradable Aconitic Acid Based Copolyester for Application in Skin Tissue Engineering
Corresponding Author(s) : Nanthini Raveendiran
Asian Journal of Chemistry,
Vol. 30 No. 9 (2018): Vol 30 Issue 9
Abstract
Biodegradable polyester elastomers have gained a greater attention in the field of skin tissue engineering. A series of novel biodegradable polyesters are synthesized, based on non toxic monomers e.g., aconitic acid, citric acid and 1,12-dodoecanediol, which are usually extracted from natural components. In the present work, a co-polyester poly (1,12-dodecanediol acotinate-co-1,12-dodecanediol citrate) (PACDDL) is synthesized by melt poly-condensation without any toxic catalyst. The chemical structure of the elastomers are then characterized by FT-IR, 1H NMR and 13C NMR. TGA, DSC techniques. The biological studies such as, in vitro cyto-compatibility, anticancer activity and CAM assay (angiogenesis) are examined. The physical properties exhibit that the elastomer is suitable for application in tissue engineering. The biological studies reveal that the polymer has excellent cell compatibility, making it suitable as potent biomaterial in skin tissue engineering.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Yoda, J. Biomater. Sci., 9, 561 (1998); https://doi.org/10.1163/156856298X00046.
- A.U. Daniels, M.K.O. Chang, K.P. Andriano and J. Heller, J. Appl. Biomater., 1, 57 (1990); https://doi.org/10.1002/jab.770010109.
- J.B. Park and J.D. Bronzino, BiomaterialsPrinciples and Applications; CRC: Boca Raton, FL (2003).
- Y. Wang, G.A. Ameer, B.J. Sheppard and R. Langer, Nat. Biotechnol., 20, 602 (2002); https://doi.org/10.1038/nbt0602-602.
- Y. Wang, Y.M. Kim and R. Langer, J. Biomed. Mater. Res. A, 66, 192 (2003); https://doi.org/10.1002/jbm.a.10534.
- J. Yang, A.R. Webb, S.J. Pickerill, G. Hageman and G.A. Ameer, Biomaterials, 27, 1889 (2006); https://doi.org/10.1016/j.biomaterials.2005.05.106.
- T. Ding, Q. Liu, R. Shi, M. Tian, J. Yang and L. Zhang, Polym. Degrad. Stab., 91, 733 (2006); https://doi.org/10.1016/j.polymdegradstab.2005.06.007.
- J.P. Bruggeman, B.-J. de Bruin, C.J. Bettinger and R. Langer, Biomaterials, 29, 4726 (2008); https://doi.org/10.1016/j.biomaterials.2008.08.037.
- L.V. Thomas and P.D. Nair, Biomatter, 1, 81 (2011); https://doi.org/10.4161/biom.1.1.17301.
- A. Kanitkar, M. Smoak, C. Chen, G. Aita, T. Scherr, L. Madsen and D. Hayes, J. Chem. Technol. Biotechnol., 91, 563 (2015); https://doi.org/10.1002/jctb.4638.
- H. Cao, Y. Zheng, J. Zhou, W. Wang and A. Pandit, Polym. Int., 60, 630 (2011); https://doi.org/10.1002/pi.2993.
- R.T. Tran, J. Yang and G.A. Ameer, Ann. Rev. Mater. Res., 45, 277 (2015).
- H.M. Younes, E. Bravo-Grimaldo and B.G. Amsden, Biomaterials, 25, 5261 (2004); https://doi.org/10.1016/j.biomaterials.2003.12.024.
- P.A. Gunatillake and R. Adhikari, Eur. Cell. Mater., 5, 1 (2003); https://doi.org/10.22203/eCM.v005a01.
- D.G. Barrett and M.N. Yousaf, Molecules, 14, 4022 (2009); https://doi.org/10.3390/molecules14104022.
- J. Yang, A.R. Webb and G.A. Ameer, Adv. Mater., 16, 511 (2004); https://doi.org/10.1002/adma.200306264.
- C. Perez, M. Pauli and P. Bazerque, Acta Biol. Med. Exp., 15, 113 (1990).
- I. Djordjevic, N.R. Choudhoury, N.K. Dutta and S. Kumar, Polym. Int., 60, 333 (2011); https://doi.org/10.1002/pi.2996.
- R.M. Jeuken, A.K. Roth, R.J.R.W. Peters, C.C. van Donkelaar, J.C. Thies, L.W. van Rhijn and P.J. Emans, Polymers, 8, 219 (2016); https://doi.org/10.3390/polym8060219.
References
R. Yoda, J. Biomater. Sci., 9, 561 (1998); https://doi.org/10.1163/156856298X00046.
A.U. Daniels, M.K.O. Chang, K.P. Andriano and J. Heller, J. Appl. Biomater., 1, 57 (1990); https://doi.org/10.1002/jab.770010109.
J.B. Park and J.D. Bronzino, BiomaterialsPrinciples and Applications; CRC: Boca Raton, FL (2003).
Y. Wang, G.A. Ameer, B.J. Sheppard and R. Langer, Nat. Biotechnol., 20, 602 (2002); https://doi.org/10.1038/nbt0602-602.
Y. Wang, Y.M. Kim and R. Langer, J. Biomed. Mater. Res. A, 66, 192 (2003); https://doi.org/10.1002/jbm.a.10534.
J. Yang, A.R. Webb, S.J. Pickerill, G. Hageman and G.A. Ameer, Biomaterials, 27, 1889 (2006); https://doi.org/10.1016/j.biomaterials.2005.05.106.
T. Ding, Q. Liu, R. Shi, M. Tian, J. Yang and L. Zhang, Polym. Degrad. Stab., 91, 733 (2006); https://doi.org/10.1016/j.polymdegradstab.2005.06.007.
J.P. Bruggeman, B.-J. de Bruin, C.J. Bettinger and R. Langer, Biomaterials, 29, 4726 (2008); https://doi.org/10.1016/j.biomaterials.2008.08.037.
L.V. Thomas and P.D. Nair, Biomatter, 1, 81 (2011); https://doi.org/10.4161/biom.1.1.17301.
A. Kanitkar, M. Smoak, C. Chen, G. Aita, T. Scherr, L. Madsen and D. Hayes, J. Chem. Technol. Biotechnol., 91, 563 (2015); https://doi.org/10.1002/jctb.4638.
H. Cao, Y. Zheng, J. Zhou, W. Wang and A. Pandit, Polym. Int., 60, 630 (2011); https://doi.org/10.1002/pi.2993.
R.T. Tran, J. Yang and G.A. Ameer, Ann. Rev. Mater. Res., 45, 277 (2015).
H.M. Younes, E. Bravo-Grimaldo and B.G. Amsden, Biomaterials, 25, 5261 (2004); https://doi.org/10.1016/j.biomaterials.2003.12.024.
P.A. Gunatillake and R. Adhikari, Eur. Cell. Mater., 5, 1 (2003); https://doi.org/10.22203/eCM.v005a01.
D.G. Barrett and M.N. Yousaf, Molecules, 14, 4022 (2009); https://doi.org/10.3390/molecules14104022.
J. Yang, A.R. Webb and G.A. Ameer, Adv. Mater., 16, 511 (2004); https://doi.org/10.1002/adma.200306264.
C. Perez, M. Pauli and P. Bazerque, Acta Biol. Med. Exp., 15, 113 (1990).
I. Djordjevic, N.R. Choudhoury, N.K. Dutta and S. Kumar, Polym. Int., 60, 333 (2011); https://doi.org/10.1002/pi.2996.
R.M. Jeuken, A.K. Roth, R.J.R.W. Peters, C.C. van Donkelaar, J.C. Thies, L.W. van Rhijn and P.J. Emans, Polymers, 8, 219 (2016); https://doi.org/10.3390/polym8060219.