Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
On the Homographic Dependence of Activation Energy and Viscosity Arrhenius' Temperature for Some Pure Fluids
Corresponding Author(s) : N.O. Alzamel
Asian Journal of Chemistry,
Vol. 30 No. 9 (2018): Vol 30 Issue 9
Abstract
Viscosity is the most important hydraulic fluid characteristic and it is one of the significant quantities which are affected by pressure and temperature. Using of statistical methods for regression and correlation analysis, any eventual causal association between the melting and boiling points and the Arrhenius-type equation parameters of some classical Newtonian fluids is attempted. Empirical validations using 101 data set of viscosity of pure Newtonian fluids studied at atmospheric pressure and at different temperature domains give reliable statistical result. In fact, we found a significant strong causal correlation between the Arrhenius activation energy (Ea), the boiling point (Tb) and the Arrhenius temperature (TA). As a result, an original empirical model modeling this relationship is suggested. The proposed model allows the prediction of the normal boiling temperature through information on viscosity Arrhenius parameters. Moreover, the proposed model is very beneficial for fluid engineering data especially for the study of systems efficiency and hydraulic components. Because of that, the need for more accurately and specific mathematical modeling of the fluid behaviour is required.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.A. Al-Omair, D. Das, L. Snoussi, B. Sinha, R. Pradhan, K. Acharjee, K. Saoudi and N. Ouerfelli, Phys. Chem. Liq., 54, 615 (2016); https://doi.org/10.1080/00319104.2016.1139707.
- M. Dallel, A.A. Al-Zahrani, H.M. Al-Shahrani, G.M. Al-Enzi, L. Snoussi, N. Vrinceanu, N.A. Al-Omair and N. Ouerfelli, Phys. Chem. Liq., 55, 541 (2017); https://doi.org/10.1080/00319104.2016.1233181.
- M. Dallel, A.A. Al-Arfaj, N.A. Al-Omair, M.A. Alkhaldi, N.O. Alzamel, A.A. Al-Zahrani and N. Ouerfelli, Asian J. Chem., 29, 2038 (2017); https://doi.org/10.14233/ajchem.2017.20764.
- H. Salhi, N.A. Al-Omair, A.A. Al-Arfaj, M.A. Alkhaldi, N.O. Alzamel, K.Y. Alqahtani and N. Ouerfelli, Asian J. Chem., 28, 1972 (2016); https://doi.org/10.14233/ajchem.2016.19858.
- M. Hichri, D. Das, A. Messaâdi, E.S.B.H. Hmida, N. Ouerfelli and I. Khattech, Phys. Chem. Liq., 51, 721 (2013); https://doi.org/10.1080/00319104.2013.802210.
- Z. Trabelsi, M. Dallel, H. Salhi, D. Das, N.A. Al-Omair and N. Ouerfelli, Phys. Chem. Liq., 53, 529 (2015); https://doi.org/10.1080/00319104.2014.947372.
- A. Messaâdi, H. Salhi, D. Das, N.O. Alzamil, M.A. Alkhaldi, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq., 53, 506 (2015); https://doi.org/10.1080/00319104.2015.1007980.
- D. Das, H. Salhi, M. Dallel, Z. Trabelsi, A.A. Al-Arfaj and N. Ouerfelli, J. Solution Chem., 44, 54 (2015); https://doi.org/10.1007/s10953-014-0289-6.
- N. Dhouibi, M. Dallel, D. Das, M. Bouaziz, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq., 53, 275 (2015); https://doi.org/10.1080/00319104.2014.972552.
- H. Salhi, M. Dallel, Z. Trabelsi, N.O. Alzamil, M.A. Alkhaldi and N. Ouerfelli, Phys. Chem. Liq., 53, 117 (2015); https://doi.org/10.1080/00319104.2014.956170.
- M.A. Alkhaldi, Phys. Chem. Liq., 56, 250 (2018); https://doi.org/10.1080/00319104.2017.1327582.
- C.R. Duhne, Chem. Eng., 86, 83 (1979).
- D.S. Viswanath and G. Natarajan, Databook on Viscosity of Liquids, Hemisphere: New York (1989).
- J.A. Dean, Handbook of Organic Chemistry. McGraw-Hill: New York (2004).
- D.S. Viswanath, T.K. Ghosh, G.H.L. Prasad, N.V.K. Dutt and K.Y. Rani, Viscosity of Liquids. Theory, Estimation, Experiment and Data, Springer: Dordrecht, The Netherlands. (2007).
- B.B. Gurung and M.N. Roy, Phys. Chem. Liq., 45, 331 (2007); https://doi.org/10.1080/00319100600574143.
- K. Saravanakumar and T.R. Kubendran, Res. J. Chem. Sci., 2, 50 (2012).
- U. Dománska and M. Królikowska, J. Solution Chem., 41, 1422 (2012); https://doi.org/10.1007/s10953-012-9875-7.
- C.M. Saxena, A. Saxena, A.K. Srivastava and N.K. Shukla, Am. Chem. Sci. J., 3, 468 (2013); https://doi.org/10.9734/ACSJ/2013/5229.
- G.F. De Verteuil, The Viscosity of Liquids (a) Normal Octanol at Atmospheric Pressure (b) an Equipment for High Pressure, Thesis in Chemical Engineering, The University of British Columbia, Vancouver, Canada,(1958). http://hdl.handle.net/2429/40892.
- G.O. Curme and F. Johnston, Viscosity of Aqueous Propylene Glycol Solutions, Curme and Johnston, Reinhold Publishing Corp., New York (1952).
- G. Czechowski, A. Rabiega and J. Jadzyn, Z. Naturforschung, 58a, 569 (2003).
- X.-X. Li, Y.-J. Hu and G. Liu, J. Chem. Eng. Data, 55, 1045 (2010); https://doi.org/10.1021/je900510x.
- I.M. Smallwood, Handbook of Organic Solvent Properties, John Wiley & Sons Inc., New York, Toronto (1996).
- A. Mariano, A. Camacho, M. Postigo, A. Valen, H. Artigas, F.M. Royo and J.S. Urieta, Braz. J. Chem. Eng., 17, 459 (2000); https://doi.org/10.1590/S0104-66322000000400011.
- D. Das, S.K. Ray and D.K. Hazra, J. Indian Chem. Soc., 80, 385 (2003).
- P.J. Victor, D. Das and D.K. Hazra, J. Indian Chem. Soc., 81, 1045 (2004).
- D. Das and D.K. Hazra, Indian J. Phys., 77B, 519 (2003).
- N. Ouerfelli, Z. Barhoumi and O. Iulian, J. Solution Chem., 41, 458 (2012); https://doi.org/10.1007/s10953-012-9812-9.
- N. Ouerfelli and M. Bouanz, J. Phys. Condens. Matter, 8, 2763 (1996); https://doi.org/10.1088/0953-8984/8/16/005.
- R. Belda, J.V. Herráez and O. Diez, Phys. Chem. Liq., 42, 467 (2004); https://doi.org/10.1080/00319100410001700850.
- S.Z. Mikhail and W.R. Kimel, J. Chem. Eng. Data, 6, 533 (1961); https://doi.org/10.1021/je60011a015.
- M.V. Rathnam, S. Mankumare and M.S.S. Kumar, J. Chem. Eng. Data, 55, 1354 (2010); https://doi.org/10.1021/je9006597.
- O. Ciocirlan and O. Iulian, J. Serb. Chem. Soc., 73, 73 (2008); https://doi.org/10.2298/JSC0801073C.
- O. Ciocirlan and O. Iulian, J. Serb. Chem. Soc., 74, 317 (2009); https://doi.org/10.2298/JSC0903317C.
- O. Ciocirlan and O. Iulian, Rev. Roum. Chim., 55, 45 (2010).
- N. Hafaiedh, A. Toumi and M. Bouanz, J. Chem. Eng. Data, 54, 2195 (2009); https://doi.org/10.1021/je800982n.
- A. Toumi, N. Hafaiedh and M. Bouanz, Fluid Phase Equilib., 278, 68 (2009); https://doi.org/10.1016/j.fluid.2009.01.004.
- J.B. Segur and H.E. Oberstar, J. Ind. Eng. Chem., 43, 2117 (1951); https://doi.org/10.1021/ie50501a040.
- X.-X. Li, G.-C. Fan, Y.-W. Wang, M. Zhang and Y.-Q. Lu, J. Mol. Liq., 151, 62 (2010); https://doi.org/10.1016/j.molliq.2009.11.005.
- C.K. Zéberg-Mikkelsen, G. Watson, A. Baylaucq, G. Galliéro and C. Boned, Fluid Phase Equilib., 245, 6 (2006); https://doi.org/10.1016/j.fluid.2006.01.030.
- S. Akhtar, M.M.H. Bhuiyan, M.S. Uddin, B.S.M. Nessa and M.A. Saleh, Phys. Chem. Liq., 37, 215 (1999); https://doi.org/10.1080/00319109908035923.
- E.D. Dikio, S.M. Nelana, D.A. Isabirye and E.E. Ebenso, Int. J. Electrochem. Sci., 7, 11101 (2012).
- S. Parthasarathi, K. Saravanakuamr, R. Baskaran and T.R. Kubendran, Int. J. Sci. Technol., 1, 96 (2011).
- A. Omrani, A.A. Rostami and M. Mokhtary, J. Mol. Liq., 157, 18 (2010); https://doi.org/10.1016/j.molliq.2010.07.015.
- A.J. Queimada, I.M. Marrucho, J.A.P. Coutinho and E.H. Stenby, Int. J. Thermophys., 26, 47 (2005); https://doi.org/10.1007/s10765-005-2352-4.
- P.J. Victor and D.K. Hazra, J. Chem. Eng. Data, 47, 79 (2002); https://doi.org/10.1021/je0101451.
- P.K. Muhuri and D.K. Hazra, J. Chem. Eng. Data, 40, 582 (1995); https://doi.org/10.1021/je00019a008.
- P.K. Muhuri and D.K. Hazra, J. Chem. Eng. Data, 39, 375 (1994); https://doi.org/10.1021/je00014a041.
- N. Saha, B. Das and D.K. Hazra, J. Chem. Eng. Data, 40, 1264 (1995); https://doi.org/10.1021/je00022a026.
- T.A. Salman, J. Al-Nahrain Univ. Sci., 11, 1 (2008); https://doi.org/10.22401/JNUS.11.3.01.
- P.K. Muhuri, B. Das and D.K. Hazra, J. Chem. Eng. Data, 41, 1473 (1996); https://doi.org/10.1021/je960196b.
- C. Spearman, Am. J. Psychol., 15, 72 (1904); https://doi.org/10.2307/1412159.
- F. Wilcoxon, Biom. Bull., 1, 80 (1945); https://doi.org/10.2307/3001968.
- R.B. Haj-Kacem, N. Ouerfelli, J.V. Herráez, M. Guettari, H. Hamda and M. Dallel, Fluid Phase Equilib., 383, 11 (2014); https://doi.org/10.1016/j.fluid.2014.09.023.
- A. Messaâdi, N. Dhouibi, H. Hamda, F.B.M. Belgacem, Y.H. Adbelkader, N. Ouerfelli and A.H. Hamzaoui, J. Chem., Article ID 163262 (2015); https://doi.org/10.1155/2015/163262.
References
N.A. Al-Omair, D. Das, L. Snoussi, B. Sinha, R. Pradhan, K. Acharjee, K. Saoudi and N. Ouerfelli, Phys. Chem. Liq., 54, 615 (2016); https://doi.org/10.1080/00319104.2016.1139707.
M. Dallel, A.A. Al-Zahrani, H.M. Al-Shahrani, G.M. Al-Enzi, L. Snoussi, N. Vrinceanu, N.A. Al-Omair and N. Ouerfelli, Phys. Chem. Liq., 55, 541 (2017); https://doi.org/10.1080/00319104.2016.1233181.
M. Dallel, A.A. Al-Arfaj, N.A. Al-Omair, M.A. Alkhaldi, N.O. Alzamel, A.A. Al-Zahrani and N. Ouerfelli, Asian J. Chem., 29, 2038 (2017); https://doi.org/10.14233/ajchem.2017.20764.
H. Salhi, N.A. Al-Omair, A.A. Al-Arfaj, M.A. Alkhaldi, N.O. Alzamel, K.Y. Alqahtani and N. Ouerfelli, Asian J. Chem., 28, 1972 (2016); https://doi.org/10.14233/ajchem.2016.19858.
M. Hichri, D. Das, A. Messaâdi, E.S.B.H. Hmida, N. Ouerfelli and I. Khattech, Phys. Chem. Liq., 51, 721 (2013); https://doi.org/10.1080/00319104.2013.802210.
Z. Trabelsi, M. Dallel, H. Salhi, D. Das, N.A. Al-Omair and N. Ouerfelli, Phys. Chem. Liq., 53, 529 (2015); https://doi.org/10.1080/00319104.2014.947372.
A. Messaâdi, H. Salhi, D. Das, N.O. Alzamil, M.A. Alkhaldi, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq., 53, 506 (2015); https://doi.org/10.1080/00319104.2015.1007980.
D. Das, H. Salhi, M. Dallel, Z. Trabelsi, A.A. Al-Arfaj and N. Ouerfelli, J. Solution Chem., 44, 54 (2015); https://doi.org/10.1007/s10953-014-0289-6.
N. Dhouibi, M. Dallel, D. Das, M. Bouaziz, N. Ouerfelli and A.H. Hamzaoui, Phys. Chem. Liq., 53, 275 (2015); https://doi.org/10.1080/00319104.2014.972552.
H. Salhi, M. Dallel, Z. Trabelsi, N.O. Alzamil, M.A. Alkhaldi and N. Ouerfelli, Phys. Chem. Liq., 53, 117 (2015); https://doi.org/10.1080/00319104.2014.956170.
M.A. Alkhaldi, Phys. Chem. Liq., 56, 250 (2018); https://doi.org/10.1080/00319104.2017.1327582.
C.R. Duhne, Chem. Eng., 86, 83 (1979).
D.S. Viswanath and G. Natarajan, Databook on Viscosity of Liquids, Hemisphere: New York (1989).
J.A. Dean, Handbook of Organic Chemistry. McGraw-Hill: New York (2004).
D.S. Viswanath, T.K. Ghosh, G.H.L. Prasad, N.V.K. Dutt and K.Y. Rani, Viscosity of Liquids. Theory, Estimation, Experiment and Data, Springer: Dordrecht, The Netherlands. (2007).
B.B. Gurung and M.N. Roy, Phys. Chem. Liq., 45, 331 (2007); https://doi.org/10.1080/00319100600574143.
K. Saravanakumar and T.R. Kubendran, Res. J. Chem. Sci., 2, 50 (2012).
U. Dománska and M. Królikowska, J. Solution Chem., 41, 1422 (2012); https://doi.org/10.1007/s10953-012-9875-7.
C.M. Saxena, A. Saxena, A.K. Srivastava and N.K. Shukla, Am. Chem. Sci. J., 3, 468 (2013); https://doi.org/10.9734/ACSJ/2013/5229.
G.F. De Verteuil, The Viscosity of Liquids (a) Normal Octanol at Atmospheric Pressure (b) an Equipment for High Pressure, Thesis in Chemical Engineering, The University of British Columbia, Vancouver, Canada,(1958). http://hdl.handle.net/2429/40892.
G.O. Curme and F. Johnston, Viscosity of Aqueous Propylene Glycol Solutions, Curme and Johnston, Reinhold Publishing Corp., New York (1952).
G. Czechowski, A. Rabiega and J. Jadzyn, Z. Naturforschung, 58a, 569 (2003).
X.-X. Li, Y.-J. Hu and G. Liu, J. Chem. Eng. Data, 55, 1045 (2010); https://doi.org/10.1021/je900510x.
I.M. Smallwood, Handbook of Organic Solvent Properties, John Wiley & Sons Inc., New York, Toronto (1996).
A. Mariano, A. Camacho, M. Postigo, A. Valen, H. Artigas, F.M. Royo and J.S. Urieta, Braz. J. Chem. Eng., 17, 459 (2000); https://doi.org/10.1590/S0104-66322000000400011.
D. Das, S.K. Ray and D.K. Hazra, J. Indian Chem. Soc., 80, 385 (2003).
P.J. Victor, D. Das and D.K. Hazra, J. Indian Chem. Soc., 81, 1045 (2004).
D. Das and D.K. Hazra, Indian J. Phys., 77B, 519 (2003).
N. Ouerfelli, Z. Barhoumi and O. Iulian, J. Solution Chem., 41, 458 (2012); https://doi.org/10.1007/s10953-012-9812-9.
N. Ouerfelli and M. Bouanz, J. Phys. Condens. Matter, 8, 2763 (1996); https://doi.org/10.1088/0953-8984/8/16/005.
R. Belda, J.V. Herráez and O. Diez, Phys. Chem. Liq., 42, 467 (2004); https://doi.org/10.1080/00319100410001700850.
S.Z. Mikhail and W.R. Kimel, J. Chem. Eng. Data, 6, 533 (1961); https://doi.org/10.1021/je60011a015.
M.V. Rathnam, S. Mankumare and M.S.S. Kumar, J. Chem. Eng. Data, 55, 1354 (2010); https://doi.org/10.1021/je9006597.
O. Ciocirlan and O. Iulian, J. Serb. Chem. Soc., 73, 73 (2008); https://doi.org/10.2298/JSC0801073C.
O. Ciocirlan and O. Iulian, J. Serb. Chem. Soc., 74, 317 (2009); https://doi.org/10.2298/JSC0903317C.
O. Ciocirlan and O. Iulian, Rev. Roum. Chim., 55, 45 (2010).
N. Hafaiedh, A. Toumi and M. Bouanz, J. Chem. Eng. Data, 54, 2195 (2009); https://doi.org/10.1021/je800982n.
A. Toumi, N. Hafaiedh and M. Bouanz, Fluid Phase Equilib., 278, 68 (2009); https://doi.org/10.1016/j.fluid.2009.01.004.
J.B. Segur and H.E. Oberstar, J. Ind. Eng. Chem., 43, 2117 (1951); https://doi.org/10.1021/ie50501a040.
X.-X. Li, G.-C. Fan, Y.-W. Wang, M. Zhang and Y.-Q. Lu, J. Mol. Liq., 151, 62 (2010); https://doi.org/10.1016/j.molliq.2009.11.005.
C.K. Zéberg-Mikkelsen, G. Watson, A. Baylaucq, G. Galliéro and C. Boned, Fluid Phase Equilib., 245, 6 (2006); https://doi.org/10.1016/j.fluid.2006.01.030.
S. Akhtar, M.M.H. Bhuiyan, M.S. Uddin, B.S.M. Nessa and M.A. Saleh, Phys. Chem. Liq., 37, 215 (1999); https://doi.org/10.1080/00319109908035923.
E.D. Dikio, S.M. Nelana, D.A. Isabirye and E.E. Ebenso, Int. J. Electrochem. Sci., 7, 11101 (2012).
S. Parthasarathi, K. Saravanakuamr, R. Baskaran and T.R. Kubendran, Int. J. Sci. Technol., 1, 96 (2011).
A. Omrani, A.A. Rostami and M. Mokhtary, J. Mol. Liq., 157, 18 (2010); https://doi.org/10.1016/j.molliq.2010.07.015.
A.J. Queimada, I.M. Marrucho, J.A.P. Coutinho and E.H. Stenby, Int. J. Thermophys., 26, 47 (2005); https://doi.org/10.1007/s10765-005-2352-4.
P.J. Victor and D.K. Hazra, J. Chem. Eng. Data, 47, 79 (2002); https://doi.org/10.1021/je0101451.
P.K. Muhuri and D.K. Hazra, J. Chem. Eng. Data, 40, 582 (1995); https://doi.org/10.1021/je00019a008.
P.K. Muhuri and D.K. Hazra, J. Chem. Eng. Data, 39, 375 (1994); https://doi.org/10.1021/je00014a041.
N. Saha, B. Das and D.K. Hazra, J. Chem. Eng. Data, 40, 1264 (1995); https://doi.org/10.1021/je00022a026.
T.A. Salman, J. Al-Nahrain Univ. Sci., 11, 1 (2008); https://doi.org/10.22401/JNUS.11.3.01.
P.K. Muhuri, B. Das and D.K. Hazra, J. Chem. Eng. Data, 41, 1473 (1996); https://doi.org/10.1021/je960196b.
C. Spearman, Am. J. Psychol., 15, 72 (1904); https://doi.org/10.2307/1412159.
F. Wilcoxon, Biom. Bull., 1, 80 (1945); https://doi.org/10.2307/3001968.
R.B. Haj-Kacem, N. Ouerfelli, J.V. Herráez, M. Guettari, H. Hamda and M. Dallel, Fluid Phase Equilib., 383, 11 (2014); https://doi.org/10.1016/j.fluid.2014.09.023.
A. Messaâdi, N. Dhouibi, H. Hamda, F.B.M. Belgacem, Y.H. Adbelkader, N. Ouerfelli and A.H. Hamzaoui, J. Chem., Article ID 163262 (2015); https://doi.org/10.1155/2015/163262.