Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Spectroscopic Study of Some Transition Metal Complexes with New Pyrazolinone Ligand Derived from 2-Hydrazino Quinoxaline-3-one
Corresponding Author(s) : Mahmoud Najim Al-Jibouri
Asian Journal of Chemistry,
Vol. 30 No. 9 (2018): Vol 30 Issue 9
Abstract
New transition metal complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with (E)-3-[4-(hydroxy(phenyl)methylene)-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]quinoxalin- 2(1H)one were synthesized and characterized by elemental analysis, FT-IR, NMR and mass spectra. The ligand was synthesized by the reaction of 2-hydrazinoquinoxaline-3(1H,4H)-one with 3-acetylcoumarin. All the metal complexes are found to be monomer in nature and have tetrahedral geometry. The IR spectra data revealed that the ligand behaves as neutral bidentate Lewis base through two nitrogen atoms of pyrazole and pyrazine moiety forming six-membered ring. The molar conductivity measurements suggested the neutral nature of all metal complexes in DMF solution. The magnetic moment measurements investigated the high spin properties of all the metal complexes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.-H. Lv, Q.-S. Li, Z.-L. Ren, M.-J. Chu, J. Sun, X. Zhang, M. Xing, H.-L. Zhu and H.-Q. Cao, Eur. J. Med. Chem., 108, 586 (2016); https://doi.org/10.1016/j.ejmech.2015.12.020.
- S. Kumar, S. Bawa, S. Drabu, R. Kumar and H. Gupta, Recent Pat. Antiinfect. Drug Discov., 4, 154 (2009). https://doi.org/10.2174/157489109789318569.
- S. Mert, R. Kasimogullari, T. Iça, F. Çolak, A. Altun and S. Ok, Eur. J. Med. Chem., 78, 86 (2014); https://doi.org/10.1016/j.ejmech.2014.03.033.
- T.F.S. Silva, T.C.O.M. Leod, L.M.D.R.S. Martins, M.F.C. Guedes da Silva, M.A. Schiavon and A.J.L. Pombeiro, J. Mol. Catal. Chem., 367, 52 (2013); https://doi.org/10.1016/j.molcata.2012.10.024.
- E. Budzisz, M. Miernicka, I.-P. Lorenz, P. Mayer, E. Balcerczak, U. Krajewska and M. Rozalski, Eur. J. Med. Chem., 45, 2613 (2010); https://doi.org/10.1016/j.ejmech.2010.02.050.
- V. Montoya, J. Pons, X. Solans, M. Font-bardia and J. Ros, Inorg. Chim. Acta, 358, 2312 (2005); https://doi.org/10.1016/j.ica.2004.12.060.
- A.S. Abu-Surrah, T.A.K. Al-Allaf, L.J. Rashan, M. Klinga and M. Leskelä, Eur. J. Med. Chem., 37, 919 (2002); https://doi.org/10.1016/S0223-5234(02)01415-0.
- A. Salzer, Coord. Chem. Rev., 242, 59 (2003); https://doi.org/10.1016/S0010-8545(03)00059-6.
- H. Maruoka, S. Nishida, N. Kashige, Y. Yoshimura, M. Omori, R. Tomita, E. Masumoto, F. Okabe, F. Miake, K. Yamagata and T. Fujioka, J. Heterocycl. Chem., 49, 1218 (2012); https://doi.org/10.1002/jhet.919.
- K. Sundaravel, E. Suresh and M. Palaniandavar, Inorg. Chim. Acta, 363, 2768 (2010); https://doi.org/10.1016/j.ica.2010.04.025.
- S. Budagumpi, U.N. Shetti, N.V. Kulkarni and V.K. Revankar, J. Coord. Chem., 62, 3961 (2009); https://doi.org/10.1080/00958970903261317.
- C.J. Dhanaraj and J. Johnson, Appl. Organomet. Chem., 30, 860 (2016); https://doi.org/10.1002/aoc.3514.
- D.S. Rani and V.J. Raju, Indian J. Chem., 38A, 385 (1999).
- M.M. Abdou, R.A. El-Saeed and S. Bondock, Arab. J. Chem.; https://doi.org/10.1016/j.arabjc.2015.06.029.
- M.A. Gouda, M.A. Berghot, E.A. Baz and W.S. Hamama, Med. Chem. Res., 21, 1062 (2012); https://doi.org/10.1007/s00044-011-9610-8.
- P.V. Anantha Lakshmi, P.S. Reddy and V.J. Raju, Spectrochimica Acta Part A, 74, 52 (2009); https://doi.org/10.1016/j.saa.2009.05.007.
- E.K. Efthimiadou, G. Psomas, Y. Sanakis, N. Katsaros and A. Karaliota, J. Inorg. Biochem., 101, 525 (2007); https://doi.org/10.1016/j.jinorgbio.2006.11.020.
- K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination Copounds, John Wiley & Sons, New York, edn 5, pp. 183-187 (1998).
- D.W. Mayo, F.A. Miller and R.W. Hannah, Course Notes on the Interpretation of Infrared and Raman Spectra, John Wiley & Sons, Hoboken: USA (2003).
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company: New York (1968)
- J.E. Huheey, Inorganic Chemistry, Principles of Structure and Reactivity Harper International: Maryland, USA, edn 51 (1994).
- J.C. Bailar, H.J. Emeleus, S.R. Nyholm and A.F. Dickenson, Comprehensive Inorganic Chemistry, Pergamon Press, New York (1975).
- A.S. El-Tabl, F.A. Aly, M.M.E. Shakdofa and A.M.E. Shakdofa, J. Coord. Chem., 63, 700 (2010); https://doi.org/10.1080/00958970903545099.
- K. Nakamoto and P.J. McCarthy, Spectroscopy and Structure of Metal Chelate Compounds, John Wiley & Sons, New York (1968).
References
X.-H. Lv, Q.-S. Li, Z.-L. Ren, M.-J. Chu, J. Sun, X. Zhang, M. Xing, H.-L. Zhu and H.-Q. Cao, Eur. J. Med. Chem., 108, 586 (2016); https://doi.org/10.1016/j.ejmech.2015.12.020.
S. Kumar, S. Bawa, S. Drabu, R. Kumar and H. Gupta, Recent Pat. Antiinfect. Drug Discov., 4, 154 (2009). https://doi.org/10.2174/157489109789318569.
S. Mert, R. Kasimogullari, T. Iça, F. Çolak, A. Altun and S. Ok, Eur. J. Med. Chem., 78, 86 (2014); https://doi.org/10.1016/j.ejmech.2014.03.033.
T.F.S. Silva, T.C.O.M. Leod, L.M.D.R.S. Martins, M.F.C. Guedes da Silva, M.A. Schiavon and A.J.L. Pombeiro, J. Mol. Catal. Chem., 367, 52 (2013); https://doi.org/10.1016/j.molcata.2012.10.024.
E. Budzisz, M. Miernicka, I.-P. Lorenz, P. Mayer, E. Balcerczak, U. Krajewska and M. Rozalski, Eur. J. Med. Chem., 45, 2613 (2010); https://doi.org/10.1016/j.ejmech.2010.02.050.
V. Montoya, J. Pons, X. Solans, M. Font-bardia and J. Ros, Inorg. Chim. Acta, 358, 2312 (2005); https://doi.org/10.1016/j.ica.2004.12.060.
A.S. Abu-Surrah, T.A.K. Al-Allaf, L.J. Rashan, M. Klinga and M. Leskelä, Eur. J. Med. Chem., 37, 919 (2002); https://doi.org/10.1016/S0223-5234(02)01415-0.
A. Salzer, Coord. Chem. Rev., 242, 59 (2003); https://doi.org/10.1016/S0010-8545(03)00059-6.
H. Maruoka, S. Nishida, N. Kashige, Y. Yoshimura, M. Omori, R. Tomita, E. Masumoto, F. Okabe, F. Miake, K. Yamagata and T. Fujioka, J. Heterocycl. Chem., 49, 1218 (2012); https://doi.org/10.1002/jhet.919.
K. Sundaravel, E. Suresh and M. Palaniandavar, Inorg. Chim. Acta, 363, 2768 (2010); https://doi.org/10.1016/j.ica.2010.04.025.
S. Budagumpi, U.N. Shetti, N.V. Kulkarni and V.K. Revankar, J. Coord. Chem., 62, 3961 (2009); https://doi.org/10.1080/00958970903261317.
C.J. Dhanaraj and J. Johnson, Appl. Organomet. Chem., 30, 860 (2016); https://doi.org/10.1002/aoc.3514.
D.S. Rani and V.J. Raju, Indian J. Chem., 38A, 385 (1999).
M.M. Abdou, R.A. El-Saeed and S. Bondock, Arab. J. Chem.; https://doi.org/10.1016/j.arabjc.2015.06.029.
M.A. Gouda, M.A. Berghot, E.A. Baz and W.S. Hamama, Med. Chem. Res., 21, 1062 (2012); https://doi.org/10.1007/s00044-011-9610-8.
P.V. Anantha Lakshmi, P.S. Reddy and V.J. Raju, Spectrochimica Acta Part A, 74, 52 (2009); https://doi.org/10.1016/j.saa.2009.05.007.
E.K. Efthimiadou, G. Psomas, Y. Sanakis, N. Katsaros and A. Karaliota, J. Inorg. Biochem., 101, 525 (2007); https://doi.org/10.1016/j.jinorgbio.2006.11.020.
K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination Copounds, John Wiley & Sons, New York, edn 5, pp. 183-187 (1998).
D.W. Mayo, F.A. Miller and R.W. Hannah, Course Notes on the Interpretation of Infrared and Raman Spectra, John Wiley & Sons, Hoboken: USA (2003).
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company: New York (1968)
J.E. Huheey, Inorganic Chemistry, Principles of Structure and Reactivity Harper International: Maryland, USA, edn 51 (1994).
J.C. Bailar, H.J. Emeleus, S.R. Nyholm and A.F. Dickenson, Comprehensive Inorganic Chemistry, Pergamon Press, New York (1975).
A.S. El-Tabl, F.A. Aly, M.M.E. Shakdofa and A.M.E. Shakdofa, J. Coord. Chem., 63, 700 (2010); https://doi.org/10.1080/00958970903545099.
K. Nakamoto and P.J. McCarthy, Spectroscopy and Structure of Metal Chelate Compounds, John Wiley & Sons, New York (1968).