Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Composites Based on Poly(vinyl chloride) and Organically Modified Clay
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
Composites based on native and chemically modified clay have been prepared via stir-solution intercalation method in poly(vinyl chloride) (PVC) matrix using dimethyl sulphoxide as a solvent and ethylene glycol as a plasticizer. The composite structures based on PVC-native clay (control) and PVC-organoclay were characterized using scanning electron microscopy and FT-IR spectroscopy. The results indicated that the modified clay particles were well intercalated and homogenously dispersed in the PVC matrix. As a result, exfoliated PVC-organoclay composite were formed. The success of modification was revealed by FT-IR results, as it confirmed the formation of CO, -COO-, CH3 and -C-CH3. The formation of hydrogen bonds between the solvent molecules (dimethyl sulfoxide) and the inner surface hydroxyl groups of clay was evidenced by the appearance of hydrogen bonds. The elemental analysis of clay samples made by EDX indicated the presence of radon, a radioactive element in clay samples up to 52 % of the total concentration of elements present in the clay sample. Biodegradation studies showed that microbes were able to biodegrade composites, with high activity recorded at dump site. Absorption kinetics of composites showed that organoclay-PVC composites were resistant to water, acid and base solutions compared to control samples based on immersion time for the test. This study demonstrated that vinegar is useful for the chemical modification of clay for enhanced surface interaction with PVC and the improvement of barrier properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gugeinheim and R.T. Martin, Clays Clay Miner., 43, 255 (1995); https://doi.org/10.1346/CCMN.1995.0430213.
- A. Aishat, S. Olalekan, A. Arinkoola and J. Omolola, Br. J. Appl. Sci. Technol., 5, 130 (2015); https://doi.org/10.9734/BJAST/2015/11942.
- H.M.C. Azeredo, Food Res. Int., 42, 1240 (2009); https://doi.org/10.1016/j.foodres.2009.03.019.
- J.-J. Lin, Y.-N. Chan and Y.-F. Lan, Materials, 3, 2588 (2010); https://doi.org/10.3390/ma3042588.
- D. Hull and T.W. Clyne, An Introduction to Composite Materials, Cambridge University Press, U.K., edn 2,p.1 (1996).
- F. Hussain, M. Hojjati, M. Okamoto and R.E. Gorga, J. Compos. Mater., 40, 1511 (2006); https://doi.org/10.1177/0021998306067321.
- M. Alexandre and P. Dubois, Mater. Sci. Eng., 28, 1 (2000); https://doi.org/10.1016/S0927-796X(00)00012-7.
- L.N. Ludueña, V.A. Alvarez and A. Vazquez, Mater. Sci. Eng. A, 460-461, 121 (2007); https://doi.org/10.1016/j.msea.2007.01.104.
- W.H. Awad, G. Beyer, D. Benderly, W.L. Ijdo, P. Songtipya, M.M. Jimenez-Gasco, E. Manias and C.A. Wilkie, Polymer, 50, 1857 (2009); https://doi.org/10.1016/j.polymer.2009.02.007.
- N. Chen, C. Wan, Y. Zhang and Y. Zhang, Polym. Test., 23, 169 (2004); https://doi.org/10.1016/S0142-9418(03)00076-X.
- A. Yoshihiko, Flame Retardants, Engineering Materials, Springer International Publishing, Switzerland, pp. 1-44 (2015).
- D.Y. Wang and C.A. Wilkie, J. Vinyl Addit. Technol., 8, 238 (2002); https://doi.org/10.1002/vnl.10369.
- L. Cabedo, E. Gimenez, J.M. Lagaron, R. Gavara and J.J. Saura, Polymer, 45, 5233 (2004); https://doi.org/10.1016/j.polymer.2004.05.018.
- R.K. Bharadwaj, Macromolecules, 34, 9189 (2001); https://doi.org/10.1021/ma010780b.
- C. Lotti, C.S. Isaac, M.C. Branciforti, R.M.V. Alves, S. Liberman and R.E.S. Bretas, Eur. Polym. J., 44, 1346 (2008); https://doi.org/10.1016/j.eurpolymj.2008.02.014.
- Y. Habibi, L.A. Lucia and O.J. Rojas, Chem. Rev., 110, 3479 (2010); https://doi.org/10.1021/cr900339w.
- Y. Azeh, G.A. Olatunji, C. Mohammed and P.A. Mamza, Int. J. Carbohydr. Chem., 2013, 1 (2013); https://doi.org/10.1155/2013/141034.
- C. Breen, R. Watson, J. Madejová, P. Komadel and Z. Klapyta, Langmuir, 13, 6473 (1997); https://doi.org/10.1021/la970507w.
- S. Carlos, I. Gemma, Polymers and Composite Group, ACCIONA Technology Centre: Spain (2014).
- D. Alyssam Polymer Nanocomposites are the Future (2005). Available from: <http://www.iopp.org/ files/nanostructures.pdf?pageid= pageid>.
- A. Yahiaoui, M. Belbachir and A. Hachemaoui, Int. J. Mol. Sci., 4, 548 (2003); https://doi.org/10.3390/i4100548.
- M.M. Kashani Motlagh, A.A. Youzbashi and Z.A. Ragi, Iran. J. Mater. Sci. Eng., 8, 50 (2011).
- M. Djebbar, F. Djafri, M. Bouchekara and A. Djafri, African J. Pure Appl. Chem., 6, 15 (2012).
- M.L.S. Suedina, R.C.B. Carla, V.L.F. Marcus, M.O.R. Claudia, H.C. Laura and L.C. Eduardo, Infrared Spectroscopy-Matetrials Science Engeering and Technology, ISBN: 978-953-51-0537-4, InTech (2012).
- O.M. Sadek, S.M. Reda and R.K. Al-Bilali, Adv. Nanopart., 2, 165 (2013); https://doi.org/10.4236/anp.2013.22025.
- P. Djomgoue and D. Njopwou, J. Surf. Eng. Mater. Adv. Technol., 3, 275 (2013); https://doi.org/10.4236/jsemat.2013.34037.
- L.-F. Liao, C.-F. Lien and J.-L. Lin, Phys. Chem. Chem. Phys., 3, 3831 (2001); https://doi.org/10.1039/b103419g.
- L. Goran, R. Hubert, R. Gert, S.K. Birgit, G. Neil, P. Jean-Philippe and S. Hermann, EUR 24403 EN, European Commission, pp. 1-36 (2010).
- M.U. Cheku. B.Sc. Project, Department of Chemistry, Ibrahim Badamasi Babangida University, Lapai, Nigeria (2012).
References
S. Gugeinheim and R.T. Martin, Clays Clay Miner., 43, 255 (1995); https://doi.org/10.1346/CCMN.1995.0430213.
A. Aishat, S. Olalekan, A. Arinkoola and J. Omolola, Br. J. Appl. Sci. Technol., 5, 130 (2015); https://doi.org/10.9734/BJAST/2015/11942.
H.M.C. Azeredo, Food Res. Int., 42, 1240 (2009); https://doi.org/10.1016/j.foodres.2009.03.019.
J.-J. Lin, Y.-N. Chan and Y.-F. Lan, Materials, 3, 2588 (2010); https://doi.org/10.3390/ma3042588.
D. Hull and T.W. Clyne, An Introduction to Composite Materials, Cambridge University Press, U.K., edn 2,p.1 (1996).
F. Hussain, M. Hojjati, M. Okamoto and R.E. Gorga, J. Compos. Mater., 40, 1511 (2006); https://doi.org/10.1177/0021998306067321.
M. Alexandre and P. Dubois, Mater. Sci. Eng., 28, 1 (2000); https://doi.org/10.1016/S0927-796X(00)00012-7.
L.N. Ludueña, V.A. Alvarez and A. Vazquez, Mater. Sci. Eng. A, 460-461, 121 (2007); https://doi.org/10.1016/j.msea.2007.01.104.
W.H. Awad, G. Beyer, D. Benderly, W.L. Ijdo, P. Songtipya, M.M. Jimenez-Gasco, E. Manias and C.A. Wilkie, Polymer, 50, 1857 (2009); https://doi.org/10.1016/j.polymer.2009.02.007.
N. Chen, C. Wan, Y. Zhang and Y. Zhang, Polym. Test., 23, 169 (2004); https://doi.org/10.1016/S0142-9418(03)00076-X.
A. Yoshihiko, Flame Retardants, Engineering Materials, Springer International Publishing, Switzerland, pp. 1-44 (2015).
D.Y. Wang and C.A. Wilkie, J. Vinyl Addit. Technol., 8, 238 (2002); https://doi.org/10.1002/vnl.10369.
L. Cabedo, E. Gimenez, J.M. Lagaron, R. Gavara and J.J. Saura, Polymer, 45, 5233 (2004); https://doi.org/10.1016/j.polymer.2004.05.018.
R.K. Bharadwaj, Macromolecules, 34, 9189 (2001); https://doi.org/10.1021/ma010780b.
C. Lotti, C.S. Isaac, M.C. Branciforti, R.M.V. Alves, S. Liberman and R.E.S. Bretas, Eur. Polym. J., 44, 1346 (2008); https://doi.org/10.1016/j.eurpolymj.2008.02.014.
Y. Habibi, L.A. Lucia and O.J. Rojas, Chem. Rev., 110, 3479 (2010); https://doi.org/10.1021/cr900339w.
Y. Azeh, G.A. Olatunji, C. Mohammed and P.A. Mamza, Int. J. Carbohydr. Chem., 2013, 1 (2013); https://doi.org/10.1155/2013/141034.
C. Breen, R. Watson, J. Madejová, P. Komadel and Z. Klapyta, Langmuir, 13, 6473 (1997); https://doi.org/10.1021/la970507w.
S. Carlos, I. Gemma, Polymers and Composite Group, ACCIONA Technology Centre: Spain (2014).
D. Alyssam Polymer Nanocomposites are the Future (2005). Available from: <http://www.iopp.org/ files/nanostructures.pdf?pageid= pageid>.
A. Yahiaoui, M. Belbachir and A. Hachemaoui, Int. J. Mol. Sci., 4, 548 (2003); https://doi.org/10.3390/i4100548.
M.M. Kashani Motlagh, A.A. Youzbashi and Z.A. Ragi, Iran. J. Mater. Sci. Eng., 8, 50 (2011).
M. Djebbar, F. Djafri, M. Bouchekara and A. Djafri, African J. Pure Appl. Chem., 6, 15 (2012).
M.L.S. Suedina, R.C.B. Carla, V.L.F. Marcus, M.O.R. Claudia, H.C. Laura and L.C. Eduardo, Infrared Spectroscopy-Matetrials Science Engeering and Technology, ISBN: 978-953-51-0537-4, InTech (2012).
O.M. Sadek, S.M. Reda and R.K. Al-Bilali, Adv. Nanopart., 2, 165 (2013); https://doi.org/10.4236/anp.2013.22025.
P. Djomgoue and D. Njopwou, J. Surf. Eng. Mater. Adv. Technol., 3, 275 (2013); https://doi.org/10.4236/jsemat.2013.34037.
L.-F. Liao, C.-F. Lien and J.-L. Lin, Phys. Chem. Chem. Phys., 3, 3831 (2001); https://doi.org/10.1039/b103419g.
L. Goran, R. Hubert, R. Gert, S.K. Birgit, G. Neil, P. Jean-Philippe and S. Hermann, EUR 24403 EN, European Commission, pp. 1-36 (2010).
M.U. Cheku. B.Sc. Project, Department of Chemistry, Ibrahim Badamasi Babangida University, Lapai, Nigeria (2012).