Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Pure and Triethanolamine Capped Hydroxyapatite Nanoparticles and its Antimicrobial and Cytotoxic Activities
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
Pure hydroxyapatite and triethanolamine capped hydroxyapatite nanoparticles were synthesized by microwave irradiation method. The nanoparticle size, morphology, phase purity and elemental composition were analyzed by XRD, SEM, TEM, FTIR and EDAX. The samples were further analyzed by antimicrobial and cytotoxity test. The XRD peaks are narrow indicated that the crystalline phase of pure hydroxyapatite with 42 nm and triethanolamine capped hydroxyapatite nanoparticles with 22 nm and is in good agreement with JCPDS card with number 09-0432. The morphology was identified to be spherical shaped by SEM micrographs with diameter of around 40-32 nm. The TEM images show the formation of smallest particles with diameter less than 50 nm. FTIR results showed the characteristic peak of O=H and P=O bond. EDAX demonstrates that it has standard Ca/P ratio 1.6. Antibacterial behaviour of pure and triethanolamine capped hydroxyapatite were investigated by agar well diffusion method using gram negative bacilli Escherichia coli and gram positive cocci Staphylococcus aureus which showed a considerable activity. The cytotoxicity was performed by using human embryonic kidney cell line HEK 293 which revealed the non-cytotoxic nature of triethanolamine capped hydroxyapatite nanoparticles towards HEK293 cell line.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Gopi, J. Indira, S. Nithiya, L. Kavitha, U.K. Mudali and K. Kanimozhi, Bull. Mater. Sci., 36, 799 (2013); https://doi.org/10.1007/s12034-013-0540-6.
- H.M. Pandya and P. Anitha, J. Environ. Nanotechnol., 3, 101 (2013); https://doi.org/10.13074/jent.2013.12.132058.
- N. Rameshbabu, T.S. Sampath Kumar, T.G. Prabhakar, V.S. Sastry, K.V.G.K. Murty and K.P. Rao, J. Biomed. Mater. Res., 80A, 581 (2006); https://doi.org/10.1002/jbm.a.30958.
- N. Iqbal, M.R.A. Kadir, N.H. Mahmood, N. Salim, G.R.A. Froemming, H.R. Balaji and T. Kamarul, Ceram. Int., 40, 4507 (2014); https://doi.org/10.1016/j.ceramint.2013.08.125.
- Y. Li, C.T. Nam and C.P. Ooi, J. Phys. Conf. Ser., 187, 012024 (2009); https://doi.org/10.1088/1742-6596/187/1/012024.
- V. Kalaiselvi, R. Mathammal and P. Anitha, Int. J. Adv. Sci. Eng., 4, 571 (2017); https://doi.org/10.29294/IJASE.4.2.2017.571-574.
- N. Puvvada, P.K. Panigrahi, H. Kalita, K.R. Chakraborty and A. Pathak, Appl. Nanosci., 3, 203 (2013); https://doi.org/10.1007/s13204-012-0133-5.
- P. Anitha and H.M. Pandya, Nanotechnol. Res. Prac., 3, 120 (2014); https://doi.org/10.13187/ejnr.2014.3.120.
- P. Kanchana and C. Sekar, Mater. Sci. Eng. C, 42, 601 (2014); https://doi.org/10.1016/j.msec.2014.05.072.
- V. Kalaiselvi and R. Mathammal, Int. J. Mag. Eng. Technol. Manage. Res., 3, 133 (2015).
- G.S. Kumar, E.K. Girija, M. Venkatesh, G. Karunakaran, E. Kolesnikov and D. Kuznetsov, Ceram. Int., 43, 3457 (2017); https://doi.org/10.1016/j.ceramint.2016.11.163.
- M. Manoj, R. Subbiah, D. Mangalraj, N. Ponpandian, C. Viswanathan and K. Park, Nanobiomedicine, 2, 2 (2015); https://doi.org/10.5772/60116.
- D. Shankar, S. Basker and S. Karthik, Asian J. Pharm. Clin. Res., 10, 46 (2017); https://doi.org/10.22159/Ajpcr.2017.V10i11.20226.
- A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi and S. Minaian, Nanomed.: Nanotechnol., Biol. Med., 3, 168 (2007); https://doi.org/10.1016/j.nano.2007.02.001.
- F. Martinez-Gutierrez, P.L. Olive, A. Banuelos, E. Orrantia, N. Nino, E.M. Sanchez, F. Ruiz, H. Bach amd Y. Av-Gay, Nanomed.: Nanotechnol., Biol. Med., 6, 681 (2010); https://doi.org/10.1016/j.nano.2010.02.001.
References
D. Gopi, J. Indira, S. Nithiya, L. Kavitha, U.K. Mudali and K. Kanimozhi, Bull. Mater. Sci., 36, 799 (2013); https://doi.org/10.1007/s12034-013-0540-6.
H.M. Pandya and P. Anitha, J. Environ. Nanotechnol., 3, 101 (2013); https://doi.org/10.13074/jent.2013.12.132058.
N. Rameshbabu, T.S. Sampath Kumar, T.G. Prabhakar, V.S. Sastry, K.V.G.K. Murty and K.P. Rao, J. Biomed. Mater. Res., 80A, 581 (2006); https://doi.org/10.1002/jbm.a.30958.
N. Iqbal, M.R.A. Kadir, N.H. Mahmood, N. Salim, G.R.A. Froemming, H.R. Balaji and T. Kamarul, Ceram. Int., 40, 4507 (2014); https://doi.org/10.1016/j.ceramint.2013.08.125.
Y. Li, C.T. Nam and C.P. Ooi, J. Phys. Conf. Ser., 187, 012024 (2009); https://doi.org/10.1088/1742-6596/187/1/012024.
V. Kalaiselvi, R. Mathammal and P. Anitha, Int. J. Adv. Sci. Eng., 4, 571 (2017); https://doi.org/10.29294/IJASE.4.2.2017.571-574.
N. Puvvada, P.K. Panigrahi, H. Kalita, K.R. Chakraborty and A. Pathak, Appl. Nanosci., 3, 203 (2013); https://doi.org/10.1007/s13204-012-0133-5.
P. Anitha and H.M. Pandya, Nanotechnol. Res. Prac., 3, 120 (2014); https://doi.org/10.13187/ejnr.2014.3.120.
P. Kanchana and C. Sekar, Mater. Sci. Eng. C, 42, 601 (2014); https://doi.org/10.1016/j.msec.2014.05.072.
V. Kalaiselvi and R. Mathammal, Int. J. Mag. Eng. Technol. Manage. Res., 3, 133 (2015).
G.S. Kumar, E.K. Girija, M. Venkatesh, G. Karunakaran, E. Kolesnikov and D. Kuznetsov, Ceram. Int., 43, 3457 (2017); https://doi.org/10.1016/j.ceramint.2016.11.163.
M. Manoj, R. Subbiah, D. Mangalraj, N. Ponpandian, C. Viswanathan and K. Park, Nanobiomedicine, 2, 2 (2015); https://doi.org/10.5772/60116.
D. Shankar, S. Basker and S. Karthik, Asian J. Pharm. Clin. Res., 10, 46 (2017); https://doi.org/10.22159/Ajpcr.2017.V10i11.20226.
A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi and S. Minaian, Nanomed.: Nanotechnol., Biol. Med., 3, 168 (2007); https://doi.org/10.1016/j.nano.2007.02.001.
F. Martinez-Gutierrez, P.L. Olive, A. Banuelos, E. Orrantia, N. Nino, E.M. Sanchez, F. Ruiz, H. Bach amd Y. Av-Gay, Nanomed.: Nanotechnol., Biol. Med., 6, 681 (2010); https://doi.org/10.1016/j.nano.2010.02.001.