Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermodynamic Properties of Binary Mixtures of Methyl Benzoate with Chlorobenzene and Benzaldehyde at 308.15 and 318.15 K
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
Densities, viscosities and ultrasonic velocities of binary liquid mixtures of methyl benzoate with chlorobenzene and benzaldehyde have been measured at 308.15 and 318.15 K. By these experimental data excess volume (VE), deviation in isentropic compressibility (ΔKS), deviation in viscosity (Δη) intermolecular free length (ΔLf), intermolecular free volume (ΔVf) and deviation in acoustic impedance (ΔZ) were calculated. These results have been correlated with the Redlich and Kister type polynomial equation to derive the coefficients and standard errors. Significance of the calculated excess quantities were analyzed for mixtures of methyl benzoate with chlorobenzene and benzaldehyde, through which intermolecular interactions have been investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-W. Sheu and C.-H. Tu, J. Chem. Eng. Data, 51, 545 (2006); https://doi.org/10.1021/je050402s.
- M.V. Rathnam, S. Mankumare and M.S.S. Kumar, J. Chem. Eng. Data, 55, 1354 (2010); https://doi.org/10.1021/je9006597.
- P.S. Nikam and S.J. Kharat, J. Chem. Eng. Data, 50, 455 (2005); https://doi.org/10.1021/je040012q.
- M.V. Rathnam, S. Mohite and M.S. Kumar, J. Chem. Eng. Data, 54, 305 (2009); https://doi.org/10.1021/je800325d.
- S.S. Sastry, B. Shaik, T. Vishwam and S.T. Ha, Phys. Chem. Liq.: An Int. J., 52, 272 (2014); https://doi.org/10.1080/00319104.2013.820302.
- J.-P.E. Grolier, D. Ballet and A. Viallard, J. Chem. Thermodyn., 6, 895 (1974); https://doi.org/10.1016/0021-9614(74)90234-1.
- T.M. Mohan, S.S. Sastry and V.R.K. Murthy, J. Solution Chem., 40, 131 (2011); https://doi.org/10.1007/s10953-010-9634-6.
- A.M. Blanco, J. Ortega, B. Garcia and J.M. Leal, Thermochim. Acta, 222, 127 (1993); https://doi.org/10.1016/0040-6031(93)80546-M.
- M.V. Rathnam, R.T. Sayed, K.R. Bhanushali and M.S.S. Kumar, J. Mol. Liq., 166, 9 (2012); https://doi.org/10.1016/j.molliq.2011.10.020.
- K. Narendra, B. Sudhamsa, M. Babu and T.S. Krishna, J. Appl. Sol. Chem. Modeling, 4, 119 (2015); https://doi.org/10.6000/1929-5030.2015.04.02.4.
- N.V. Sastry, A. George, N.J. Jain and P. Bahadur, J. Chem. Eng. Data, 44, 456 (1999); https://doi.org/10.1021/je980174k.
- T.G. Lavanya, K. Saravanakumar, R. Baskaran and T.T. Kubendran, Int. J. Thermophys., 34, 1280 (2013); https://doi.org/10.1007/s10765-013-1492-1.
- N.I. Malek, S.P. Ijardar and S.B. Oswal, Thermochim. Acta, 539, 71 (2012); https://doi.org/10.1016/j.tca.2012.04.002.
- J.N. Nayak, M.I. Aralaguppi and T.M. Aminabhavi, J. Chem. Eng. Data, 48, 628 (2003); https://doi.org/10.1021/je0201828.
- S.S. Sastry, S. Babu, T. Vishwam and H.S. Tiong, J. Therm. Anal. Calorim., 116, 923 (2014); https://doi.org/10.1007/s10973-013-3570-9.
- P. Vasantharani, L. Balu, R.E. Pavai and S. Shailajha, Global J. Mol. Sci., 4, 42 (2009).
- A.R. Venis and X.R. Rajkumar, Asian J. Chem., 26, 4711 (2014); https://doi.org/10.14233/ajchem.2014.16182.
- S. Felixa, U. Sivakami and R. Venis, World J. Pharm. Pharm. Sci., 5, 1602 (2016).
- S. Kumar and P. Jeevanandham, J. Mol. Liq., 174, 34 (2012); https://doi.org/10.1016/j.molliq.2012.07.025.
- O. Kiyohara and G.C. Benson, J. Chem. Thermodyn., 11, 861 (1979); https://doi.org/10.1016/0021-9614(79)90067-3.
- G.C. Benson and O. Kiyohara, J. Chem. Thermodyn., 11, 1061 (1979); https://doi.org/10.1016/0021-9614(79)90136-8.
- I. Alonso, I. Mozo, I.G. de la Fuente, J.A. González and J.C. Cobos, J. Chem. Eng. Data, 55, 5400 (2010); https://doi.org/10.1021/je100472t.
- M. Yasmin and M. Gupta, J. Solution Chem., 40, 1458 (2011); https://doi.org/10.1007/s10953-011-9731-1.
- K.R. Reddy, D.B.K. Kumar, G.S. Rao, P. Anila and C. Rambabu, Thermochim. Acta, 590, 116 (2014); https://doi.org/10.1016/j.tca.2014.06.026.
- S. Azhagiri, S. Jayakumar, R. Padmanaban, S. Gunasekaran and S. Srinivasan, J. Solution Chem., 38, 441 (2009); https://doi.org/10.1007/s10953-009-9383-6.
- B. Jacobson, E. Halonen and C. Faurholt, Acta Chem. Scand., 6, 1485 (1952); https://doi.org/10.3891/acta.chem.scand.06-1485.
- R. Thiyagarajan and L. Palaniappan, Phys. Chem. Liq., 46, 366 (2008); https://doi.org/10.1080/00319100701312807.
- O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
- K. Saravanakumar and T.R. Kubendran, Res. J. Chem. Sci., 2, 50 (2012).
- S. Prakash and J.D. Pandey, J. Sci. Ind.. Res., 21B, 593 (1962).
- R.J. Fort and W.R. Moore, Trans. Faraday Soc., 61, 2102 (1965); https://doi.org/10.1039/tf9656102102.
- Sk. Md Nayeem, M. Kondaiah, K. Sreekanth and D. Krishna Rao, J. Thermodynam., Article ID 487403 (2014); https://doi.org/10.1155/2014/487403.
- F. Nabi, M.A. Malik, C.G. Jesudason and S.A. Al-Thabaiti, Korean J. Chem. Eng., 31, 1505 (2014); https://doi.org/10.1007/s11814-014-0173-5.
- J.S. Rowlinson and F.L. Swinton, Liquids and Liquid Mixtures, Butterworths, London, edn 3 (1982).
- K. Liler, ed.: D. Hadzi, Hydrogen Bonding, Pergamon Press, London (1959).
- A. Pal and R.K. Bhardwaj, Z. Phys. Chem., 216, 1033 (2002); https://doi.org/10.1524/zpch.2002.216.9.1033.
- B. Sinha, Phys. Chem. Liq., 48, 183 (2010); https://doi.org/10.1080/00319100802706691.
- M. Kondaiah and D. Krishna Rao, J. Mol. Liq., 195, 110 (2014); https://doi.org/10.1016/j.molliq.2014.02.010.
References
Y.-W. Sheu and C.-H. Tu, J. Chem. Eng. Data, 51, 545 (2006); https://doi.org/10.1021/je050402s.
M.V. Rathnam, S. Mankumare and M.S.S. Kumar, J. Chem. Eng. Data, 55, 1354 (2010); https://doi.org/10.1021/je9006597.
P.S. Nikam and S.J. Kharat, J. Chem. Eng. Data, 50, 455 (2005); https://doi.org/10.1021/je040012q.
M.V. Rathnam, S. Mohite and M.S. Kumar, J. Chem. Eng. Data, 54, 305 (2009); https://doi.org/10.1021/je800325d.
S.S. Sastry, B. Shaik, T. Vishwam and S.T. Ha, Phys. Chem. Liq.: An Int. J., 52, 272 (2014); https://doi.org/10.1080/00319104.2013.820302.
J.-P.E. Grolier, D. Ballet and A. Viallard, J. Chem. Thermodyn., 6, 895 (1974); https://doi.org/10.1016/0021-9614(74)90234-1.
T.M. Mohan, S.S. Sastry and V.R.K. Murthy, J. Solution Chem., 40, 131 (2011); https://doi.org/10.1007/s10953-010-9634-6.
A.M. Blanco, J. Ortega, B. Garcia and J.M. Leal, Thermochim. Acta, 222, 127 (1993); https://doi.org/10.1016/0040-6031(93)80546-M.
M.V. Rathnam, R.T. Sayed, K.R. Bhanushali and M.S.S. Kumar, J. Mol. Liq., 166, 9 (2012); https://doi.org/10.1016/j.molliq.2011.10.020.
K. Narendra, B. Sudhamsa, M. Babu and T.S. Krishna, J. Appl. Sol. Chem. Modeling, 4, 119 (2015); https://doi.org/10.6000/1929-5030.2015.04.02.4.
N.V. Sastry, A. George, N.J. Jain and P. Bahadur, J. Chem. Eng. Data, 44, 456 (1999); https://doi.org/10.1021/je980174k.
T.G. Lavanya, K. Saravanakumar, R. Baskaran and T.T. Kubendran, Int. J. Thermophys., 34, 1280 (2013); https://doi.org/10.1007/s10765-013-1492-1.
N.I. Malek, S.P. Ijardar and S.B. Oswal, Thermochim. Acta, 539, 71 (2012); https://doi.org/10.1016/j.tca.2012.04.002.
J.N. Nayak, M.I. Aralaguppi and T.M. Aminabhavi, J. Chem. Eng. Data, 48, 628 (2003); https://doi.org/10.1021/je0201828.
S.S. Sastry, S. Babu, T. Vishwam and H.S. Tiong, J. Therm. Anal. Calorim., 116, 923 (2014); https://doi.org/10.1007/s10973-013-3570-9.
P. Vasantharani, L. Balu, R.E. Pavai and S. Shailajha, Global J. Mol. Sci., 4, 42 (2009).
A.R. Venis and X.R. Rajkumar, Asian J. Chem., 26, 4711 (2014); https://doi.org/10.14233/ajchem.2014.16182.
S. Felixa, U. Sivakami and R. Venis, World J. Pharm. Pharm. Sci., 5, 1602 (2016).
S. Kumar and P. Jeevanandham, J. Mol. Liq., 174, 34 (2012); https://doi.org/10.1016/j.molliq.2012.07.025.
O. Kiyohara and G.C. Benson, J. Chem. Thermodyn., 11, 861 (1979); https://doi.org/10.1016/0021-9614(79)90067-3.
G.C. Benson and O. Kiyohara, J. Chem. Thermodyn., 11, 1061 (1979); https://doi.org/10.1016/0021-9614(79)90136-8.
I. Alonso, I. Mozo, I.G. de la Fuente, J.A. González and J.C. Cobos, J. Chem. Eng. Data, 55, 5400 (2010); https://doi.org/10.1021/je100472t.
M. Yasmin and M. Gupta, J. Solution Chem., 40, 1458 (2011); https://doi.org/10.1007/s10953-011-9731-1.
K.R. Reddy, D.B.K. Kumar, G.S. Rao, P. Anila and C. Rambabu, Thermochim. Acta, 590, 116 (2014); https://doi.org/10.1016/j.tca.2014.06.026.
S. Azhagiri, S. Jayakumar, R. Padmanaban, S. Gunasekaran and S. Srinivasan, J. Solution Chem., 38, 441 (2009); https://doi.org/10.1007/s10953-009-9383-6.
B. Jacobson, E. Halonen and C. Faurholt, Acta Chem. Scand., 6, 1485 (1952); https://doi.org/10.3891/acta.chem.scand.06-1485.
R. Thiyagarajan and L. Palaniappan, Phys. Chem. Liq., 46, 366 (2008); https://doi.org/10.1080/00319100701312807.
O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
K. Saravanakumar and T.R. Kubendran, Res. J. Chem. Sci., 2, 50 (2012).
S. Prakash and J.D. Pandey, J. Sci. Ind.. Res., 21B, 593 (1962).
R.J. Fort and W.R. Moore, Trans. Faraday Soc., 61, 2102 (1965); https://doi.org/10.1039/tf9656102102.
Sk. Md Nayeem, M. Kondaiah, K. Sreekanth and D. Krishna Rao, J. Thermodynam., Article ID 487403 (2014); https://doi.org/10.1155/2014/487403.
F. Nabi, M.A. Malik, C.G. Jesudason and S.A. Al-Thabaiti, Korean J. Chem. Eng., 31, 1505 (2014); https://doi.org/10.1007/s11814-014-0173-5.
J.S. Rowlinson and F.L. Swinton, Liquids and Liquid Mixtures, Butterworths, London, edn 3 (1982).
K. Liler, ed.: D. Hadzi, Hydrogen Bonding, Pergamon Press, London (1959).
A. Pal and R.K. Bhardwaj, Z. Phys. Chem., 216, 1033 (2002); https://doi.org/10.1524/zpch.2002.216.9.1033.
B. Sinha, Phys. Chem. Liq., 48, 183 (2010); https://doi.org/10.1080/00319100802706691.
M. Kondaiah and D. Krishna Rao, J. Mol. Liq., 195, 110 (2014); https://doi.org/10.1016/j.molliq.2014.02.010.