Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Ferric Nanoparticles on Monoaminoxidase and Acetylcholinesterase in Healthy Human Sera
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
In this study the Fe2O3 nanoparticles were prepared by sol-gel method. The size distributions of the metals nanoparticles were examined by FTIR spectrophotometer, atomic force microscopy and X-ray diffraction which illustrated that the nanoparticles were with hexagonal shape having averaged diameter of 54 nm derived from oleic acid. At the other side the nanoparticles prepared for carboxylic acid were irregular and unsystematic distributed with a maximum value of 0.38 and 2.9 nm exhibits morphology with a root-mean square (RMS) roughness of 0.077 and 0.494 nm for carboxylic acid. The effect of Fe2O3 nanoparticles were studied on the activities of monoaminoxidase (MAO) and acetylcholinesterase (AChE) in sera. Ferric nanoparticles demonstrated inhibitor effect on MAO and AChE and these effect increase with increasing the concentration of nanoparticles. The values of Vmax and Km were achieved and calculated for these nanoparticales.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.F.R. Fouda, M.B. El-Kholy, S.A. Mostafa, A.I. Hussien, M.A. Wahba and M.F. El-Shahat, Adv. Mater. Lett., 4, 347 (2013); https://doi.org/10.5185/amlett.2012.9421.
- A. Ibrahim and B.A. Abubakar, African J. Pure Appl. Chem., 7, 114 (2013); https://doi.org/10.5897/AJPAC12.002.
- S. Bagheri, K.G. Chandrappa and S.B. Abd Hamid, Res. J. Chem. Sci., 3, 62 (2013).
- B. Lv, Y. Xu, D. Wu and Y. Sun, J. Mater. Sci. Technol., 25, 155 (2009).
- L. Zhang and Y. Wu, J. Nanomater., Article ID 640940 (2013); https://doi.org/10.1155/2013/640940.
- F. Jiao, A. Harrison, J.-C. Jumas, A.V. Chadwick, W. Kockelmann and P.G. Bruce, J. Am. Chem. Soc., 128, 5468 (2006); https://doi.org/10.1021/ja0584774.
- G.S. Li, R.L. Smith Jr., H. Inomata and K. Arai, Mater. Res. Bull., 37, 949 (2002); https://doi.org/10.1016/S0025-5408(02)00695-5.
- J. Zhang, L.X. Rong, Y. Liu and B.Z. Dong, Mater. Sci. Eng. A, 351, 224 (2003); https://doi.org/10.1016/S0921-5093(02)00861-4.
- R. Wang and X.C. Tang, Neurosignals, 14, 71 (2005); https://doi.org/10.1159/000085387.
- L. Davis, J.J. Britten and M. Morgan, Anaesthesia, 52, 244 (1997); https://doi.org/10.1111/j.1365-2044.1997.084-az0080.x.
- C.W. Abell and S.W. Kwan, Prog. Nucl. Acid Res. Mol. Biol., 65, 129 (2001); https://doi.org/10.1016/S0079-6603(00)65004-3.
- B. Mondovi and A.F. Agro, Structure and Function of Amine Oxidases, CRC Press, Boca Raton, FL (1982).
- C.M. Mcewen Jr. and J.D. Cohen, J. Lab. Clin. Med., 62, 766 (1963).
- G.L. Ellman, K.D. Courtney, V. Andres Jr. and R.M. Featherstone, Biochem. Pharmacol., 7, 88 (1961); https://doi.org/10.1016/0006-2952(61)90145-9.
- F. Bossa, E. Chiancone, A. Finazzi-Agrò and R. Strom, Structure and Function Relationships in Biochemical Systems, In: Advances in Experimental Medicine and Bioligy, Springer, Boston, USA, edn 1, vol 148 (1982).
- Ch. Karunakaran and S. Senthilvelan, Catal. Commun., 6, 159 (2005); https://doi.org/10.1016/j.catcom.2004.11.014.
- S. Karthikeyeni, T. Siva Vijayakumar, S. Vasanth, A. Ganesh, M. Manimegalai and P. Subramanian, J. Acad. Ind. Res., 1, 645 (2013).
- V.A. Sadykov, L.A. Isupova, S.V. Tsybulya, S.V. Cherepanova, G.S. Litvak, E.B. Burgina, G.N. Kustova, V.N. Kolomiichuk, V.P. Ivanov, E.A. Paukshtis, A.V. Golovin and E.G. Avvakumov, J. Solid State Chem., 123, 191 (1996); https://doi.org/10.1006/jssc.1996.0168.
- D.K. Bora, Ph.D. Thesis, Hematite and its Hybrid Nanostructures for Photoelectrochemical Water Splitting: How Do Properties Affect Functionality? Faculty of Science, University of Basel, Basel, Switzerland (2012).
- W.M. Shwe, M.M. Oo and S.S. Hlaing, Int. J. Chem. Environ. Biol. Sci., 1, 412 (2013).
- R. Thapa, J. Gorski, A. Bogedin, M. Maywood, C. Clement, S.H. Nasr, D. Hanna, X. Huang, B.J. Roth, G. Madlambayan and G.D. Wilson, Int. J. Cancer Therapy Oncol., 4, 1 (2016); https://doi.org/10.14319/ijcto.42.4.
- M.F. Farhat, M.A. Makhlouf, A.M. El-Saghier, A. B.A. Mezoughi, S.M. Awhida and A.A.M. El-Mehdi, Arabian J. Chem., 4, 307 (2011); https://doi.org/10.1016/j.arabjc.2010.06.051.
References
M.F.R. Fouda, M.B. El-Kholy, S.A. Mostafa, A.I. Hussien, M.A. Wahba and M.F. El-Shahat, Adv. Mater. Lett., 4, 347 (2013); https://doi.org/10.5185/amlett.2012.9421.
A. Ibrahim and B.A. Abubakar, African J. Pure Appl. Chem., 7, 114 (2013); https://doi.org/10.5897/AJPAC12.002.
S. Bagheri, K.G. Chandrappa and S.B. Abd Hamid, Res. J. Chem. Sci., 3, 62 (2013).
B. Lv, Y. Xu, D. Wu and Y. Sun, J. Mater. Sci. Technol., 25, 155 (2009).
L. Zhang and Y. Wu, J. Nanomater., Article ID 640940 (2013); https://doi.org/10.1155/2013/640940.
F. Jiao, A. Harrison, J.-C. Jumas, A.V. Chadwick, W. Kockelmann and P.G. Bruce, J. Am. Chem. Soc., 128, 5468 (2006); https://doi.org/10.1021/ja0584774.
G.S. Li, R.L. Smith Jr., H. Inomata and K. Arai, Mater. Res. Bull., 37, 949 (2002); https://doi.org/10.1016/S0025-5408(02)00695-5.
J. Zhang, L.X. Rong, Y. Liu and B.Z. Dong, Mater. Sci. Eng. A, 351, 224 (2003); https://doi.org/10.1016/S0921-5093(02)00861-4.
R. Wang and X.C. Tang, Neurosignals, 14, 71 (2005); https://doi.org/10.1159/000085387.
L. Davis, J.J. Britten and M. Morgan, Anaesthesia, 52, 244 (1997); https://doi.org/10.1111/j.1365-2044.1997.084-az0080.x.
C.W. Abell and S.W. Kwan, Prog. Nucl. Acid Res. Mol. Biol., 65, 129 (2001); https://doi.org/10.1016/S0079-6603(00)65004-3.
B. Mondovi and A.F. Agro, Structure and Function of Amine Oxidases, CRC Press, Boca Raton, FL (1982).
C.M. Mcewen Jr. and J.D. Cohen, J. Lab. Clin. Med., 62, 766 (1963).
G.L. Ellman, K.D. Courtney, V. Andres Jr. and R.M. Featherstone, Biochem. Pharmacol., 7, 88 (1961); https://doi.org/10.1016/0006-2952(61)90145-9.
F. Bossa, E. Chiancone, A. Finazzi-Agrò and R. Strom, Structure and Function Relationships in Biochemical Systems, In: Advances in Experimental Medicine and Bioligy, Springer, Boston, USA, edn 1, vol 148 (1982).
Ch. Karunakaran and S. Senthilvelan, Catal. Commun., 6, 159 (2005); https://doi.org/10.1016/j.catcom.2004.11.014.
S. Karthikeyeni, T. Siva Vijayakumar, S. Vasanth, A. Ganesh, M. Manimegalai and P. Subramanian, J. Acad. Ind. Res., 1, 645 (2013).
V.A. Sadykov, L.A. Isupova, S.V. Tsybulya, S.V. Cherepanova, G.S. Litvak, E.B. Burgina, G.N. Kustova, V.N. Kolomiichuk, V.P. Ivanov, E.A. Paukshtis, A.V. Golovin and E.G. Avvakumov, J. Solid State Chem., 123, 191 (1996); https://doi.org/10.1006/jssc.1996.0168.
D.K. Bora, Ph.D. Thesis, Hematite and its Hybrid Nanostructures for Photoelectrochemical Water Splitting: How Do Properties Affect Functionality? Faculty of Science, University of Basel, Basel, Switzerland (2012).
W.M. Shwe, M.M. Oo and S.S. Hlaing, Int. J. Chem. Environ. Biol. Sci., 1, 412 (2013).
R. Thapa, J. Gorski, A. Bogedin, M. Maywood, C. Clement, S.H. Nasr, D. Hanna, X. Huang, B.J. Roth, G. Madlambayan and G.D. Wilson, Int. J. Cancer Therapy Oncol., 4, 1 (2016); https://doi.org/10.14319/ijcto.42.4.
M.F. Farhat, M.A. Makhlouf, A.M. El-Saghier, A. B.A. Mezoughi, S.M. Awhida and A.A.M. El-Mehdi, Arabian J. Chem., 4, 307 (2011); https://doi.org/10.1016/j.arabjc.2010.06.051.