Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Orange 2G Dye from Aqueous Solutions Using TiO2-Based Nanoparticles: Isotherm and Kinetic Studies
Corresponding Author(s) : A.A. Al-Arfaj
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
In the current study, the removal of Orange 2G dye founded in aqueous solutions using titanium dioxide-based nanoparticles has been investigated. Titanium dioxide nanoparticles were successfully prepared using tetrabutyl ammonium bromide (TTAB) as a surfactant by sol-gel method and characterized by X-ray diffraction, BET surface area, IR and TEM spectroscopy. The experimental data is most fitting with Freundlich isotherm model indicating heterogeneity of sorbent surface. Langmuir data revealed that the maximum removal capacity of Orange 2G equals to 85.47 mg g-1. Kinetic studies disclosed that intraparticle diffusion is not the only rate-determining step and the removal process is organized by a chemical reaction as well.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.C. Somasekhara Reddy, L. Sivaramakrishna and A.V. Reddy, J. Hazard. Mater., 203-204, 118 (2012); https://doi.org/10.1016/j.jhazmat.2011.11.083.
- J. Sun, L. Qiao, S. Sun and G. Wang, J. Hazard. Mater., 155, 312 (2008); https://doi.org/10.1016/j.jhazmat.2007.11.062.
- M. Pelaez, A.A. de la Cruz, E. Stathatos, P. Falaras and D.D. Dionysiou, Catal. Today, 144, 19 (2009); https://doi.org/10.1016/j.cattod.2008.12.022.
- S.M. Reda and A.A. Al-Arfaj, J. Curr. Phys. Chem., 3, 366 (2013); https://doi.org/10.2174/1877946811303030011.
- A. Jakubiak, I.A. Owsik and B.N. Kolarz, React. Funct. Polym., 65, 161 (2005); https://doi.org/10.1016/j.reactfunctpolym.2004.10.006.
- B.N. Kolarz, A. Jakubiak, J. Jezierska and B. Dach, React. Funct. Polym., 68, 1207 (2008); https://doi.org/10.1016/j.reactfunctpolym.2008.04.005.
- M.R. Maurya, S. Sikarwar, T. Joseph, P. Manikandan and S.B. Halligudi, React. Funct. Polym., 63, 71 (2005); https://doi.org/10.1016/j.reactfunctpolym.2005.02.008.
- K.C. Gupta and A.K. Sutar, Polym. Adv. Technol., 19, 186 (2008); https://doi.org/10.1002/pat.994.
- K.C. Gupta and A.K. Sutar, React. Funct. Polym., 68, 12 (2008); https://doi.org/10.1016/j.reactfunctpolym.2007.10.015.
- M. Ruiz, A.M. Sastre and E. Guibal, React. Funct. Polym., 45, 155 (2000); https://doi.org/10.1016/S1381-5148(00)00019-5.
- F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011.
- O.C.S. Al Hamouz, Arab. J. Sci. Eng., 41, 119 (2016); https://doi.org/10.1007/s13369-015-1622-0.
- O. Hamdaoui and E. Naffrechoux, J. Hazard. Mater., 147, 381 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.021.
- R.C. Bansal and M. Goyal, Activated Carbon Adsorption, Boca Raton, CRC Press, Taylor Francis Group (2005). https://www.taylorfrancis.com/books/9781420028812.
- K. Bhattacharyya, Appl. Clay Sci., 41, 1 (2008); https://doi.org/10.1016/j.clay.2007.09.005.
- V. Belessi, G. Romanos, N. Boukos, D. Lambropoulou and C. Trapalis, J. Hazard. Mater., 170, 836 (2009); https://doi.org/10.1016/j.jhazmat.2009.05.045.
- G. Mascolo, R. Comparelli, M.L. Curri, G. Lovecchio, A. Lopez and A. Agostiano, J. Hazard. Mater., 142, 130 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.068.
- M.B. Ibrahim and S. Sani, Open J. Phys. Chem., 4, 139 (2014); https://doi.org/10.4236/ojpc.2014.44017.
- W.S.W. Ngah and S. Fatinathan, J. Environ. Sci. (China), 22, 338 (2010); https://doi.org/10.1016/S1001-0742(09)60113-3.
- A.O. Dada, A.P. Olalekan, A.M. Olatunya and O. Dada, IOSR J. Appl. Chem., 3, 38 (2012); https://doi.org/10.9790/5736-0313845.
- H. Zhang, R.G. McDowell, L.R. Martin and Y. Qiang, Appl. Mater. Interfaces, 8, 9523 (2016); https://doi.org/10.1021/acsami.6b01550.
- A. Maleki, E. Pajootan and B. Hayati, Taiwan Inst. Chem. Eng., 51, 127 (2015); https://doi.org/10.1016/j.jtice.2015.01.004.
- C. Noureddine, A. Lekhmici and M.S. Mubarak, J. Appl. Polym. Sci., 107, 1316 (2008); https://doi.org/10.1002/app.26627.
- R.R. Sheha and A.A. El-Zahhar, J. Hazard. Mater., 150, 795 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.042.
- E.C. Lima, M.A. Adebayo and F.M. Machado, in eds.: C.P. Bergmann and F.M. Machado, Kinetic and Equilibrium Models of Adsorption in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer, pp. 33-69 (2015);
- A.K. Sarkar, A. Saha, A. Tarafder, A.B. Panda and S. Pal, ACS Sustain. Chem. Eng., 4, 1679 (2016); https://doi.org/10.1021/acssuschemeng.5b01614.
- D. Ljubas, G. Smoljanic and H. Juretic, J. Environ. Manage., 161, 83 (2015); https://doi.org/10.1016/j.jenvman.2015.06.042.
- A. Mohammadi and A.A. Karimi, J. Water Environ. Nanotechnol., 2, 118 (2017); https://doi.org/10.22090/jwent.2017.02.007.
- Z.M. Abou-Gamra and M.A. Ahmed, Adv. Chem. Eng. Sci., 5, 373 (2015); https://doi.org/10.4236/aces.2015.53039.
- S. Jafari, Ph.D. Thesis, Investigation of Adsorption of Dyes onto Modified Titanium Dioxide, Acta Universitatis Lappeenrantaensis, Yliopistopaino, Finland (2016); http://urn.fi/URN:ISBN:978-952-265-970-5.
References
M.C. Somasekhara Reddy, L. Sivaramakrishna and A.V. Reddy, J. Hazard. Mater., 203-204, 118 (2012); https://doi.org/10.1016/j.jhazmat.2011.11.083.
J. Sun, L. Qiao, S. Sun and G. Wang, J. Hazard. Mater., 155, 312 (2008); https://doi.org/10.1016/j.jhazmat.2007.11.062.
M. Pelaez, A.A. de la Cruz, E. Stathatos, P. Falaras and D.D. Dionysiou, Catal. Today, 144, 19 (2009); https://doi.org/10.1016/j.cattod.2008.12.022.
S.M. Reda and A.A. Al-Arfaj, J. Curr. Phys. Chem., 3, 366 (2013); https://doi.org/10.2174/1877946811303030011.
A. Jakubiak, I.A. Owsik and B.N. Kolarz, React. Funct. Polym., 65, 161 (2005); https://doi.org/10.1016/j.reactfunctpolym.2004.10.006.
B.N. Kolarz, A. Jakubiak, J. Jezierska and B. Dach, React. Funct. Polym., 68, 1207 (2008); https://doi.org/10.1016/j.reactfunctpolym.2008.04.005.
M.R. Maurya, S. Sikarwar, T. Joseph, P. Manikandan and S.B. Halligudi, React. Funct. Polym., 63, 71 (2005); https://doi.org/10.1016/j.reactfunctpolym.2005.02.008.
K.C. Gupta and A.K. Sutar, Polym. Adv. Technol., 19, 186 (2008); https://doi.org/10.1002/pat.994.
K.C. Gupta and A.K. Sutar, React. Funct. Polym., 68, 12 (2008); https://doi.org/10.1016/j.reactfunctpolym.2007.10.015.
M. Ruiz, A.M. Sastre and E. Guibal, React. Funct. Polym., 45, 155 (2000); https://doi.org/10.1016/S1381-5148(00)00019-5.
F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011.
O.C.S. Al Hamouz, Arab. J. Sci. Eng., 41, 119 (2016); https://doi.org/10.1007/s13369-015-1622-0.
O. Hamdaoui and E. Naffrechoux, J. Hazard. Mater., 147, 381 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.021.
R.C. Bansal and M. Goyal, Activated Carbon Adsorption, Boca Raton, CRC Press, Taylor Francis Group (2005). https://www.taylorfrancis.com/books/9781420028812.
K. Bhattacharyya, Appl. Clay Sci., 41, 1 (2008); https://doi.org/10.1016/j.clay.2007.09.005.
V. Belessi, G. Romanos, N. Boukos, D. Lambropoulou and C. Trapalis, J. Hazard. Mater., 170, 836 (2009); https://doi.org/10.1016/j.jhazmat.2009.05.045.
G. Mascolo, R. Comparelli, M.L. Curri, G. Lovecchio, A. Lopez and A. Agostiano, J. Hazard. Mater., 142, 130 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.068.
M.B. Ibrahim and S. Sani, Open J. Phys. Chem., 4, 139 (2014); https://doi.org/10.4236/ojpc.2014.44017.
W.S.W. Ngah and S. Fatinathan, J. Environ. Sci. (China), 22, 338 (2010); https://doi.org/10.1016/S1001-0742(09)60113-3.
A.O. Dada, A.P. Olalekan, A.M. Olatunya and O. Dada, IOSR J. Appl. Chem., 3, 38 (2012); https://doi.org/10.9790/5736-0313845.
H. Zhang, R.G. McDowell, L.R. Martin and Y. Qiang, Appl. Mater. Interfaces, 8, 9523 (2016); https://doi.org/10.1021/acsami.6b01550.
A. Maleki, E. Pajootan and B. Hayati, Taiwan Inst. Chem. Eng., 51, 127 (2015); https://doi.org/10.1016/j.jtice.2015.01.004.
C. Noureddine, A. Lekhmici and M.S. Mubarak, J. Appl. Polym. Sci., 107, 1316 (2008); https://doi.org/10.1002/app.26627.
R.R. Sheha and A.A. El-Zahhar, J. Hazard. Mater., 150, 795 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.042.
E.C. Lima, M.A. Adebayo and F.M. Machado, in eds.: C.P. Bergmann and F.M. Machado, Kinetic and Equilibrium Models of Adsorption in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer, pp. 33-69 (2015);
A.K. Sarkar, A. Saha, A. Tarafder, A.B. Panda and S. Pal, ACS Sustain. Chem. Eng., 4, 1679 (2016); https://doi.org/10.1021/acssuschemeng.5b01614.
D. Ljubas, G. Smoljanic and H. Juretic, J. Environ. Manage., 161, 83 (2015); https://doi.org/10.1016/j.jenvman.2015.06.042.
A. Mohammadi and A.A. Karimi, J. Water Environ. Nanotechnol., 2, 118 (2017); https://doi.org/10.22090/jwent.2017.02.007.
Z.M. Abou-Gamra and M.A. Ahmed, Adv. Chem. Eng. Sci., 5, 373 (2015); https://doi.org/10.4236/aces.2015.53039.
S. Jafari, Ph.D. Thesis, Investigation of Adsorption of Dyes onto Modified Titanium Dioxide, Acta Universitatis Lappeenrantaensis, Yliopistopaino, Finland (2016); http://urn.fi/URN:ISBN:978-952-265-970-5.