Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Activated Carbon from Hydrothermally Banana Empty Fruit Bunch for Adsorption of Pb(II) and Cr(VI) in Aqueous Solution
Corresponding Author(s) : Allwar Allwar
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
Activated carbon was synthesized from banana empty fruit bunch using phosphoric acid activation under hydrothermal process and used its effectiveness was examined for adsorption of Pb(II) and Cr(VI) ions in aqueous solution. The plot of nitrogen adsorption desorption isotherm provides the combination of Type II and IV isotherms with wide hysteresis loop, relating to highly mesoporous structure. The morphological surface shows an irregular or unsmooth, and most of the pores are closed. The FTIR spectrum shows that activated carbon has oxygen-containing functional groups. Adsorption capacity was observed with different parameters such as pH of the solution, adsorbent dosage, contact time and concentration of adsorbate. Equilibrium adsorptions were evaluated using the Freundlich and Langmuir isotherm. The Langmuir shows more favourable than Freundlich isotherm with correlation coefficient, R2 of 0.9767 and 0.9693 for Pb(II) and Cr(VI) ions, respectively. The results of this work proved that the banana empty fruit bunch activated is effectively used as adsorbent for adsorption of the metal ions from aqueous solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.A. Hegaz, HBRC J., 9, 276 (2013); https://doi.org/10.1016/j.hbrcj.2013.08.004.
- M.S. Abdel-Raouf and A.R.M. Abdul-Raheim, J. Pollut. Effects Control, 5, 180 (2017); https://doi.org/10.4172/2375-4397.1000180.
- K.R.S. Harsha, M. Murthy, L. Udayasimha, Dharmaprakash and D. Rangappa, Mater. Today: Proceed., 4, 12321 (2017); https://doi.org/10.1016/j.matpr.2017.09.166.
- M.A. Barakat, Arab. J. Chem., 4, 361 (2011); https://doi.org/10.1016/j.arabjc.2010.07.019.
- Z. Yang, Z. Zhang, L. Chai, Y. Wang, Y. Liu and R. Xiao, J. Hazard. Mater., 301, 145 (2016); https://doi.org/10.1016/j.jhazmat.2015.08.047.
- A.O. Dada, A.P. Olalekan, A. Olatunya and A.O. Dada, IOSR J. Appl. Chem., 3, 38 (2012).
- M.K.B. Gratuito, T. Panyathanmaporn, N. Sirinuntawittaya, A. Dutta and R.A. Chumnanklang, Bioresour. Technol., 99, 4887 (2008); https://doi.org/10.1016/j.biortech.2007.09.042.
- P. Sugumaran, V. Priya Susan, P. Ravichandran and S. Seshadri, J. Sustain. Energy Environ., 3, 125 (2012).
- A. Arami-Niya, W.M.A.W. Daud and F.S. Mjalli, Chem. Eng. Res. Design, 89, 657 (2011)
- S.M. Anisuzzaman, C.G. Joseph, W.M.A.W. Daud, D. Krishnaiah and H.S. Yee, Int. J. Ind. Chem., 6, 9 (2015); https://doi.org/10.1007/s40090-014-0027-3.
- M.B. Desta, J. Thermodyn., Article ID 375830 (2013); https://doi.org/10.1155/2013/375830.
- Y.S. Ho, Polish J. Environ. Stud., 15, 81 (2006).
- M.K. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty, R.S. Singh and B.N. Rai, Resour.-Effic. Technol., 2(Suppl. 1), S63 (2016); https://doi.org/10.1016/j.reffit.2016.11.011.
- M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman and R.H. Ansary, Materials, 7, 3634 (2014); https://doi.org/10.3390/ma7053634.
- A. Tytlak, P. Oleszczuk and R. Dobrowolski, Environ. Sci. Pollut. Res. Int., 22, 5985 (2015); https://doi.org/10.1007/s11356-014-3752-4.
- E. Deliyanni, A. Arabatzidou, N. Tzoupanos and K.A. Matis, Adsorpt. Sci. Technol., 30, 627 (2012); https://doi.org/10.1260/0263-6174.30.7.627.
- E.A. Deliyanni, G.Z. Kyzas, K.S. Triantafyllidis and K.A. Matis, Open Chem., 13, 699 (2015); https://doi.org/10.1515/chem-2015-0087.
- A. Ozer and H.B. Pirincci, J. Hazard. Mater., 137, 849 (2006); https://doi.org/10.1016/j.jhazmat.2006.03.009.
References
H.A. Hegaz, HBRC J., 9, 276 (2013); https://doi.org/10.1016/j.hbrcj.2013.08.004.
M.S. Abdel-Raouf and A.R.M. Abdul-Raheim, J. Pollut. Effects Control, 5, 180 (2017); https://doi.org/10.4172/2375-4397.1000180.
K.R.S. Harsha, M. Murthy, L. Udayasimha, Dharmaprakash and D. Rangappa, Mater. Today: Proceed., 4, 12321 (2017); https://doi.org/10.1016/j.matpr.2017.09.166.
M.A. Barakat, Arab. J. Chem., 4, 361 (2011); https://doi.org/10.1016/j.arabjc.2010.07.019.
Z. Yang, Z. Zhang, L. Chai, Y. Wang, Y. Liu and R. Xiao, J. Hazard. Mater., 301, 145 (2016); https://doi.org/10.1016/j.jhazmat.2015.08.047.
A.O. Dada, A.P. Olalekan, A. Olatunya and A.O. Dada, IOSR J. Appl. Chem., 3, 38 (2012).
M.K.B. Gratuito, T. Panyathanmaporn, N. Sirinuntawittaya, A. Dutta and R.A. Chumnanklang, Bioresour. Technol., 99, 4887 (2008); https://doi.org/10.1016/j.biortech.2007.09.042.
P. Sugumaran, V. Priya Susan, P. Ravichandran and S. Seshadri, J. Sustain. Energy Environ., 3, 125 (2012).
A. Arami-Niya, W.M.A.W. Daud and F.S. Mjalli, Chem. Eng. Res. Design, 89, 657 (2011)
S.M. Anisuzzaman, C.G. Joseph, W.M.A.W. Daud, D. Krishnaiah and H.S. Yee, Int. J. Ind. Chem., 6, 9 (2015); https://doi.org/10.1007/s40090-014-0027-3.
M.B. Desta, J. Thermodyn., Article ID 375830 (2013); https://doi.org/10.1155/2013/375830.
Y.S. Ho, Polish J. Environ. Stud., 15, 81 (2006).
M.K. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty, R.S. Singh and B.N. Rai, Resour.-Effic. Technol., 2(Suppl. 1), S63 (2016); https://doi.org/10.1016/j.reffit.2016.11.011.
M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman and R.H. Ansary, Materials, 7, 3634 (2014); https://doi.org/10.3390/ma7053634.
A. Tytlak, P. Oleszczuk and R. Dobrowolski, Environ. Sci. Pollut. Res. Int., 22, 5985 (2015); https://doi.org/10.1007/s11356-014-3752-4.
E. Deliyanni, A. Arabatzidou, N. Tzoupanos and K.A. Matis, Adsorpt. Sci. Technol., 30, 627 (2012); https://doi.org/10.1260/0263-6174.30.7.627.
E.A. Deliyanni, G.Z. Kyzas, K.S. Triantafyllidis and K.A. Matis, Open Chem., 13, 699 (2015); https://doi.org/10.1515/chem-2015-0087.
A. Ozer and H.B. Pirincci, J. Hazard. Mater., 137, 849 (2006); https://doi.org/10.1016/j.jhazmat.2006.03.009.