Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Vibrational Spectroscopy, Crystal Structure and Hirshfeld Surface Analysis of Sodium Aquadichlororido[N-(3-aminopropyl)-N′-(propyl)ethane-1,2-diamine]chromium(III) Tetrachloridozincate
Corresponding Author(s) : Jong-Ha Choi
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
The structure of aquadichlororido[N-(3-aminopropyl)-N′-(propyl)ethane-1,2-diamine]chromium(III) tetrachloridozincate, Na[CrCl2(C8H21N3)(OH2)]ZnCl4 (C8H21N3 is N-(3-aminopropyl)-N′- (propyl)ethane-1,2-diamine), has been determined from synchrotron X-ray diffraction data. The complex crystallized in the space group P21/n of the monoclinic system with four mononuclear formula units in a cell of dimensions a = 12.665(3), b = 14.048(3), c = 12.814(3) Å and β = 118.57(3)°. The Cr(III) ion is coordinated by three N atoms from the N-(3-aminopropyl)-N’-(propyl)ethane-1,2-diamine, two chloride ions and one O atom from a water molecule in a trans-meridional arrangement, displaying a slightly distorted octahedral geometry. Three Cr–N bond lengths are in the ranges 2.056 (2) to 2.126 (2) Å while the mean Cr–Cl and Cr–(OH2) bond lengths are 2.3248 (8) and 2.0185 (17) Å, respectively. The crystal packing is stabilized by hydrogen bonding interactions among the amine N–H groups, the water molecule O–H group, Cl ligand and Cl atom of tetrachloridozincate anion. The tetrahedral [ZnCl4]2- anion is distorted owing to its involvements in O–H···Cl and N–H···Cl hydrogen bonds and connecting Na+ ion. Hirshfeld surface (HS) analysis by 3D molecular surface contours and 2D fingerprint plots have been used to analyze intermolecular interactions present in the crystal. The IR and Raman spectral properties are also described.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-H. Choi and P.E. Hoggard, Polyhedron, 11, 2399 (1992); https://doi.org/10.1016/S0277-5387(00)83531-7.
- J.-H. Choi, I.H. Suh and S.H. Kwak, Acta Crystallogr. C, 51, 1745 (1995); https://doi.org/10.1107/S0108270195002800.
- T.W. Hambley, G.H. Searle and M.R. Snow, Aust. J. Chem., 35, 1285 (1982); https://doi.org/10.1071/CH9821285.
- D.A. House, Inorg. Chim. Acta, 121, 167 (1986); https://doi.org/10.1016/S0020-1693(00)84516-8.
- D.A. House and W.T. Robinson, Inorg. Chim. Acta, 141, 211 (1988); https://doi.org/10.1016/S0020-1693(00)83912-2.
- D.A. House, V. McKee and W.T. Robinson, Inorg. Chim. Acta, 157, 15 (1989); https://doi.org/10.1016/S0020-1693(00)83418-0.
- C.R. Groom, I.J. Bruno, M.P. Lightfoot and S.C. Ward, Acta Crystallogr. B, 72, 171 (2016); https://doi.org/10.1107/S2052520616003954.
- J.-H. Choi and U. Lee, Acta Crystallogr. E Struct. Rep. Online, 64, m1186 (2008); https://doi.org/10.1107/S1600536808026081.
- J.W. Shin, K. Eom and D. Moon, J. Synchrotron Rad., 23, 369 (2016); https://doi.org/10.1107/S1600577515021633.
- Z. Otwinowski and W. Minor, eds., C.W. Carter Jr. and R.M. Sweet, Methods in Enzymology, Academic Press, New York, Vol. 276, Macromolecular Crystallography, Part A, pp. 307-326 (1997).
- G.M. Sheldrick, Acta Crystallogr. A, 71, 3 (2015); https://doi.org/10.1107/S2053273314026370.
- K. Brandenburg and H. Putz, DIAMOND-3, University of Bonn, Germany (2014).
- D. Moon and J.-H. Choi, Spectrochim. Acta A, 138, 774 (2015); https://doi.org/10.1016/j.saa.2014.11.099.
- J.-H. Choi, Chem. Phys., 256, 29 (2000); https://doi.org/10.1016/S0301-0104(00)00097-5.
- J.-H. Choi, Spectrochim. Acta A, 56, 1653 (2000); https://doi.org/10.1016/S1386-1425(00)00221-3.
- J.-H. Choi, I.G. Oh, T. Suzuki and S. Kaizaki, J. Mol. Struct., 694, 39 (2004); https://doi.org/10.1016/j.molstruc.2004.01.034.
- J.-H. Choi, Y.P. Hong and Y.C. Park, Spectrochim. Acta A, 58, 1599 (2002); https://doi.org/10.1016/S1386-1425(01)00611-4.
- J.-H. Choi and S.H. Lee, J. Mol. Struct., 932, 84 (2009); https://doi.org/10.1016/j.molstruc.2009.05.048.
- J.-H. Choi, Inorg. Chim. Acta, 362, 4231 (2009); https://doi.org/10.1016/j.ica.2009.05.024.
- J.-H. Choi and D. Moon, J. Mol. Struct., 1059, 325 (2014); https://doi.org/10.1016/j.molstruc.2013.12.008.
- K. Karoui, M. Ben Bechir, A. Ben Rhaiem, A. Bulou, F. Calvayrac and K. Guidara, Phase Transit., 87, 613 (2014); https://doi.org/10.1080/01411594.2013.879588.
- J.-H. Choi, W. Clegg and R.W. Harrington, Z. Anorg. Allg. Chem., 637, 562 (2011); https://doi.org/10.1002/zaac.201000375.
- D. Moon and J.H. Choi, Acta Crystallogr. E Struct. Rep. Online, 72, 424 (2016); https://doi.org/10.1107/S2056989016002978.
- J.-H. Choi, H.-S. Kim and M.H. Habibi, Bull. Korean Chem. Soc., 29, 1399 (2008); https://doi.org/10.5012/bkcs.2008.29.7.1399.
- M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A.
- M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka and M.A. Spackman, CrystalExplorer17, University of Western Australia (2017).
- M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B.
- D. Moon, S. Tanaka, T. Akitsu and J.-H. Choi, J. Mol. Struct., 1154, 338 (2018); https://doi.org/10.1016/j.molstruc.2017.10.066.
- T. Aree, Y.P. Hong and J.-H. Choi, J. Mol. Struct., 1163, 86 (2018); https://doi.org/10.1016/j.molstruc.2018.02.102.
References
J.-H. Choi and P.E. Hoggard, Polyhedron, 11, 2399 (1992); https://doi.org/10.1016/S0277-5387(00)83531-7.
J.-H. Choi, I.H. Suh and S.H. Kwak, Acta Crystallogr. C, 51, 1745 (1995); https://doi.org/10.1107/S0108270195002800.
T.W. Hambley, G.H. Searle and M.R. Snow, Aust. J. Chem., 35, 1285 (1982); https://doi.org/10.1071/CH9821285.
D.A. House, Inorg. Chim. Acta, 121, 167 (1986); https://doi.org/10.1016/S0020-1693(00)84516-8.
D.A. House and W.T. Robinson, Inorg. Chim. Acta, 141, 211 (1988); https://doi.org/10.1016/S0020-1693(00)83912-2.
D.A. House, V. McKee and W.T. Robinson, Inorg. Chim. Acta, 157, 15 (1989); https://doi.org/10.1016/S0020-1693(00)83418-0.
C.R. Groom, I.J. Bruno, M.P. Lightfoot and S.C. Ward, Acta Crystallogr. B, 72, 171 (2016); https://doi.org/10.1107/S2052520616003954.
J.-H. Choi and U. Lee, Acta Crystallogr. E Struct. Rep. Online, 64, m1186 (2008); https://doi.org/10.1107/S1600536808026081.
J.W. Shin, K. Eom and D. Moon, J. Synchrotron Rad., 23, 369 (2016); https://doi.org/10.1107/S1600577515021633.
Z. Otwinowski and W. Minor, eds., C.W. Carter Jr. and R.M. Sweet, Methods in Enzymology, Academic Press, New York, Vol. 276, Macromolecular Crystallography, Part A, pp. 307-326 (1997).
G.M. Sheldrick, Acta Crystallogr. A, 71, 3 (2015); https://doi.org/10.1107/S2053273314026370.
K. Brandenburg and H. Putz, DIAMOND-3, University of Bonn, Germany (2014).
D. Moon and J.-H. Choi, Spectrochim. Acta A, 138, 774 (2015); https://doi.org/10.1016/j.saa.2014.11.099.
J.-H. Choi, Chem. Phys., 256, 29 (2000); https://doi.org/10.1016/S0301-0104(00)00097-5.
J.-H. Choi, Spectrochim. Acta A, 56, 1653 (2000); https://doi.org/10.1016/S1386-1425(00)00221-3.
J.-H. Choi, I.G. Oh, T. Suzuki and S. Kaizaki, J. Mol. Struct., 694, 39 (2004); https://doi.org/10.1016/j.molstruc.2004.01.034.
J.-H. Choi, Y.P. Hong and Y.C. Park, Spectrochim. Acta A, 58, 1599 (2002); https://doi.org/10.1016/S1386-1425(01)00611-4.
J.-H. Choi and S.H. Lee, J. Mol. Struct., 932, 84 (2009); https://doi.org/10.1016/j.molstruc.2009.05.048.
J.-H. Choi, Inorg. Chim. Acta, 362, 4231 (2009); https://doi.org/10.1016/j.ica.2009.05.024.
J.-H. Choi and D. Moon, J. Mol. Struct., 1059, 325 (2014); https://doi.org/10.1016/j.molstruc.2013.12.008.
K. Karoui, M. Ben Bechir, A. Ben Rhaiem, A. Bulou, F. Calvayrac and K. Guidara, Phase Transit., 87, 613 (2014); https://doi.org/10.1080/01411594.2013.879588.
J.-H. Choi, W. Clegg and R.W. Harrington, Z. Anorg. Allg. Chem., 637, 562 (2011); https://doi.org/10.1002/zaac.201000375.
D. Moon and J.H. Choi, Acta Crystallogr. E Struct. Rep. Online, 72, 424 (2016); https://doi.org/10.1107/S2056989016002978.
J.-H. Choi, H.-S. Kim and M.H. Habibi, Bull. Korean Chem. Soc., 29, 1399 (2008); https://doi.org/10.5012/bkcs.2008.29.7.1399.
M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A.
M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka and M.A. Spackman, CrystalExplorer17, University of Western Australia (2017).
M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B.
D. Moon, S. Tanaka, T. Akitsu and J.-H. Choi, J. Mol. Struct., 1154, 338 (2018); https://doi.org/10.1016/j.molstruc.2017.10.066.
T. Aree, Y.P. Hong and J.-H. Choi, J. Mol. Struct., 1163, 86 (2018); https://doi.org/10.1016/j.molstruc.2018.02.102.