Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Physical and Spectral Properties of Quaternary System of 2,5-Hexandione + Cyclopentanol + Cyclohexanol + 3-Heptanol Mixture at 298 K
Corresponding Author(s) : Ahmed Mohammed Abbas
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
Some physical properties (e.g., density, viscosity and refractive index) of quaternary liquid mixture (2,5-hexandione + cyclopentanol + cyclohexanol + 3-heptanol) of different mole fraction of the components have been measured at 298.15 K. From the experimental density, viscosity and refractive index the values of excess volume (VE), deviation of viscosity (Δη), deviation of refractive index (Δn) and excess free Gibbs energy of activation of flow (ΔGE) have been calculated. the nature of molecular interactions between the components of liquids mixtures has been explained due to interaction parameters and excess properties. The FTIR spectrum shows a drastic change in the frequency and intensity after mixing of organic compounds at all entire range of mole fraction under study. The shift in the frequency values might be due to H-bonding or dipole-induced dipole interaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Rajavel, Int. J. Sci. Res., 3, 845 (2014).
- P.S. Naidu and K. Ravindra, Indian J. Pure Appl. Phys., 40, 264 (2002).
- S. Kamila and G.D. Natraj, Turk. J. Phys., 36, 422 (2012).
- S.S. Sastry, S.V. Kumara Sastry and T. Vishwam, Int. J. Innov. Res. Sci. Eng. Technol., 2, 5146 (2013).
- S. Ajitha, A.H. Malini and V.N. Meena Devi, Res. J. Pharm. Biol Chem. Sci., 4, 218 (2013).
- A.N. Abd, Ph.D. Thesis, Baghdad University, Baghdad, Iraq (2009).
- H.E. Salman, J. Kerbala Univ., 5, 114 (2007).
- A.M. Awwad and A.M. Farhan, J. Chem. Thermodyn., 41, 205 (2009); https://doi.org/10.1016/j.jct.2008.09.024.
- A.B. Dikko, J.B. Yerima and S. Solomon, World Wide J. Multidiscipl. Res. Dev., 1, 13 (2015).
- E.T. Kareem, National J. Chem. (Iraq), 39, 515 (2010).
- A.B. Dikko, Ph.D. Thesis, Modibbo Adama University of Technology, Yola, Nigeria (2014).
- E. Álvarez, Á. Cancela, R. Maceiras, J.M. Navaza and R. Táboas, J. Chem. Eng. Data, 51, 940 (2006); https://doi.org/10.1021/je050416y.
- N.A. Atamas and A.A. Atamas, World Acad. Sci. Eng. Technol., 3, 55 (2009).
- G. Ritzoulis, D. Missopolinou, S. Doulami and C. Panayiotou, J. Chem. Eng. Data, 45, 636 (2000); https://doi.org/10.1021/je990226l.
- E.A. Muller and P. Rasmussen, J. Chem. Eng. Data, 36, 214 (1991); https://doi.org/10.1021/je00002a019.
- C. Yang, W. Xu and P. Ma, J. Chem. Eng. Data, 49, 1794 (2004); https://doi.org/10.1021/je049776w.
- P.S. Nikam, T.R. Mahale and M. Hasan, J. Chem. Eng. Data, 41, 1055 (1996); https://doi.org/10.1021/je960090g.
- H.-W. Chen, C.-C. Wen and C.-H. Tu, J. Chem. Eng. Data, 49, 347 (2004); https://doi.org/10.1021/je030226s.
- P. Brocos, A. Pineiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003); https://doi.org/10.1039/B208765K.
- A. Henni, J.J. Hromek, P. Tontiwachwuthikul and A. Chakma, J. Chem. Eng. Data, 48, 551 (2003); https://doi.org/10.1021/je0201119.
- Y. Nagasawa, Y. Nakagawa, A. Nagafuji, T. Okada and H. Miyasaka, J. Mol. Struct., 735-736, 217 (2005); https://doi.org/10.1016/j.molstruc.2004.11.014.
- V. Chiosa, M. Manea, I. Stanclescu and C. Mandravel, Rev. Roum. Chim., 52, 739 (2007).
References
S. Rajavel, Int. J. Sci. Res., 3, 845 (2014).
P.S. Naidu and K. Ravindra, Indian J. Pure Appl. Phys., 40, 264 (2002).
S. Kamila and G.D. Natraj, Turk. J. Phys., 36, 422 (2012).
S.S. Sastry, S.V. Kumara Sastry and T. Vishwam, Int. J. Innov. Res. Sci. Eng. Technol., 2, 5146 (2013).
S. Ajitha, A.H. Malini and V.N. Meena Devi, Res. J. Pharm. Biol Chem. Sci., 4, 218 (2013).
A.N. Abd, Ph.D. Thesis, Baghdad University, Baghdad, Iraq (2009).
H.E. Salman, J. Kerbala Univ., 5, 114 (2007).
A.M. Awwad and A.M. Farhan, J. Chem. Thermodyn., 41, 205 (2009); https://doi.org/10.1016/j.jct.2008.09.024.
A.B. Dikko, J.B. Yerima and S. Solomon, World Wide J. Multidiscipl. Res. Dev., 1, 13 (2015).
E.T. Kareem, National J. Chem. (Iraq), 39, 515 (2010).
A.B. Dikko, Ph.D. Thesis, Modibbo Adama University of Technology, Yola, Nigeria (2014).
E. Álvarez, Á. Cancela, R. Maceiras, J.M. Navaza and R. Táboas, J. Chem. Eng. Data, 51, 940 (2006); https://doi.org/10.1021/je050416y.
N.A. Atamas and A.A. Atamas, World Acad. Sci. Eng. Technol., 3, 55 (2009).
G. Ritzoulis, D. Missopolinou, S. Doulami and C. Panayiotou, J. Chem. Eng. Data, 45, 636 (2000); https://doi.org/10.1021/je990226l.
E.A. Muller and P. Rasmussen, J. Chem. Eng. Data, 36, 214 (1991); https://doi.org/10.1021/je00002a019.
C. Yang, W. Xu and P. Ma, J. Chem. Eng. Data, 49, 1794 (2004); https://doi.org/10.1021/je049776w.
P.S. Nikam, T.R. Mahale and M. Hasan, J. Chem. Eng. Data, 41, 1055 (1996); https://doi.org/10.1021/je960090g.
H.-W. Chen, C.-C. Wen and C.-H. Tu, J. Chem. Eng. Data, 49, 347 (2004); https://doi.org/10.1021/je030226s.
P. Brocos, A. Pineiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003); https://doi.org/10.1039/B208765K.
A. Henni, J.J. Hromek, P. Tontiwachwuthikul and A. Chakma, J. Chem. Eng. Data, 48, 551 (2003); https://doi.org/10.1021/je0201119.
Y. Nagasawa, Y. Nakagawa, A. Nagafuji, T. Okada and H. Miyasaka, J. Mol. Struct., 735-736, 217 (2005); https://doi.org/10.1016/j.molstruc.2004.11.014.
V. Chiosa, M. Manea, I. Stanclescu and C. Mandravel, Rev. Roum. Chim., 52, 739 (2007).