Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Density Functional Studies of Electronic Structure, Chemical Bonding and Thermodynamic Properties of Ternary Lanthanum-Gold-Cadmium Inorganic Materials
Corresponding Author(s) : Jyoti Sagar
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
Density functional theory analyses of electronic structure together with thermodynamic properties were performed for the two promising ternary rare earth gold compounds (viz. LaAuCd and La2Au2Cd). We have applied the state-of-the-art full potential linear augmented plane wave plus local orbital (FP-LAPW + lo) method. Exchange and correlation potential were introduced within the framework of the generalized gradient approximation (GGA). Careful analysis of valance charge density distribution shows ionic character whereas electron dispersion curves indicate that both the compounds possess metallic character. This metallic character in both the compounds is caused by bonding of La-p, Au-p and Cd-p orbitals in terms of hybridization at Fermi level. Effects of temperature and pressure on bulk modulus, Debye temperature, specific heat, thermal expansion coefficient and entropy have been investigated in wide temperature and pressure range. The calculated lattice parameters are in good agreement with available experimental/theoretical literature values. Thermodynamic properties of LaAuCd and La2Au2Cd have been estimated for the first time and explained on the basic facts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Villars and L.D. Calvert, Pearson‘s Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Materials Park: Ohio, USA, edn 2 (1991).
- R. Mishra, R. Pöttgen, R.-D. Hoffmann, D. Kaczorowski, H. Piotrowski, P. Mayer, C. Rosenhahn and B.D. Mosel, Z. Anorg. Allg. Chem., 627, 1283 (2001); https://doi.org/10.1002/1521-3749(200106)627:6<1283::AID-ZAAC1283>3.0.CO;2-L.
- J. Fickensc Rodewald, Ute C.; Niepmann, D.; Mishra, R.; Eschen, M.; Pöottgen, R., Z. Naturforsch, 60b, 271 (2005).
- W. Rieger, H. Nowotny and F. Benesovsky, Monatsh. Chem., 95, 1502 (1964); https://doi.org/10.1007/BF00901704.
- K. Remschnig, T. Le Bihan, H. Noël and P. Rogl, J. Solid State Chem., 97, 391 (1992); https://doi.org/10.1016/0022-4596(92)90048-Z.
- R. Pöottgen, Z. Naturforsch. B, 49, 1309 (1994).
- R. Pöottgen and R. Dronskowski, Z. Anorg. Allg. Chem., 622, 355 (1996); https://doi.org/10.1002/zaac.19966220225.
- D. Laffargue, F. Fourgeot, F. Bouree, B. Chevalier, T. Roisnel and J. Etourneau, J. Solid State Commun., 100, 575 (1996); https://doi.org/10.1016/0038-1098(96)00475-9.
- K. Schwarz and P. Blaha, Comput. Mater. Sci., 28, 259 (2003); https://doi.org/10.1016/S0927-0256(03)00112-5.
- P. Blaha, K. Schwarg, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Technical University, Austria (2001).
- G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt and L. Nordström, Phys. Rev. B, 64, 195134 (2001); https://doi.org/10.1103/PhysRevB.64.195134.
- A. Otero-de-la-Roza, D. Abbasi-Pérez and V. Luaña, Comput. Phys. Commun., 182, 2232 (2011); https://doi.org/10.1016/j.cpc.2011.05.009.
- F.D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 244 (1944); https://doi.org/10.1073/pnas.30.9.244.
- R.P. Singh, Indian J. Phys., 89, 377 (2015); https://doi.org/10.1007/s12648-014-0591-6.
- R. Winter and J. Jonas, High Pressure Chemistry, Biochemistry and Material Science, Springer Science and Business Media, B.V. (1992).
- B.D. Fahlman, Materials Chemistry, Springer, Dordrecht (2011).
- U. Benedict and W.B. Holzapfel, ed.: K.A. Gschneidner, High Pressure Studies-Structural Aspects, In: Handbook of Physics and Chemistry of Rare Earths, North Holand, Amsterdam (1993).
- S. Stolen and T. Grande, Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects, Wiley (2004).
- D. McQuarrie, Quantum Chemistry, University Science Books: USA, edn 2 (2008).
- G.N. Lewis, J. Am. Chem. Soc., 29, 1165 (1907); https://doi.org/10.1021/ja01962a002.
- P.J. van der Put, The Inorganic Chemistry of Materials: How to Make Things out of Elements, Plenum Press: New York (1998).
- C.Y. Ho and R.E. Taylor, Thermal Expansion of Solids edited by CINDAS Data Series on Material Properties, I-4 (1998).
- N. Shulumba, Ph.D. Thesis, Vibrations in Solids: From First Principles Lattice Dynamics to High Temperature Phase Stability Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, Sweden (2015).
References
P. Villars and L.D. Calvert, Pearson‘s Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Materials Park: Ohio, USA, edn 2 (1991).
R. Mishra, R. Pöttgen, R.-D. Hoffmann, D. Kaczorowski, H. Piotrowski, P. Mayer, C. Rosenhahn and B.D. Mosel, Z. Anorg. Allg. Chem., 627, 1283 (2001); https://doi.org/10.1002/1521-3749(200106)627:6<1283::AID-ZAAC1283>3.0.CO;2-L.
J. Fickensc Rodewald, Ute C.; Niepmann, D.; Mishra, R.; Eschen, M.; Pöottgen, R., Z. Naturforsch, 60b, 271 (2005).
W. Rieger, H. Nowotny and F. Benesovsky, Monatsh. Chem., 95, 1502 (1964); https://doi.org/10.1007/BF00901704.
K. Remschnig, T. Le Bihan, H. Noël and P. Rogl, J. Solid State Chem., 97, 391 (1992); https://doi.org/10.1016/0022-4596(92)90048-Z.
R. Pöottgen, Z. Naturforsch. B, 49, 1309 (1994).
R. Pöottgen and R. Dronskowski, Z. Anorg. Allg. Chem., 622, 355 (1996); https://doi.org/10.1002/zaac.19966220225.
D. Laffargue, F. Fourgeot, F. Bouree, B. Chevalier, T. Roisnel and J. Etourneau, J. Solid State Commun., 100, 575 (1996); https://doi.org/10.1016/0038-1098(96)00475-9.
K. Schwarz and P. Blaha, Comput. Mater. Sci., 28, 259 (2003); https://doi.org/10.1016/S0927-0256(03)00112-5.
P. Blaha, K. Schwarg, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Technical University, Austria (2001).
G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt and L. Nordström, Phys. Rev. B, 64, 195134 (2001); https://doi.org/10.1103/PhysRevB.64.195134.
A. Otero-de-la-Roza, D. Abbasi-Pérez and V. Luaña, Comput. Phys. Commun., 182, 2232 (2011); https://doi.org/10.1016/j.cpc.2011.05.009.
F.D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 244 (1944); https://doi.org/10.1073/pnas.30.9.244.
R.P. Singh, Indian J. Phys., 89, 377 (2015); https://doi.org/10.1007/s12648-014-0591-6.
R. Winter and J. Jonas, High Pressure Chemistry, Biochemistry and Material Science, Springer Science and Business Media, B.V. (1992).
B.D. Fahlman, Materials Chemistry, Springer, Dordrecht (2011).
U. Benedict and W.B. Holzapfel, ed.: K.A. Gschneidner, High Pressure Studies-Structural Aspects, In: Handbook of Physics and Chemistry of Rare Earths, North Holand, Amsterdam (1993).
S. Stolen and T. Grande, Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects, Wiley (2004).
D. McQuarrie, Quantum Chemistry, University Science Books: USA, edn 2 (2008).
G.N. Lewis, J. Am. Chem. Soc., 29, 1165 (1907); https://doi.org/10.1021/ja01962a002.
P.J. van der Put, The Inorganic Chemistry of Materials: How to Make Things out of Elements, Plenum Press: New York (1998).
C.Y. Ho and R.E. Taylor, Thermal Expansion of Solids edited by CINDAS Data Series on Material Properties, I-4 (1998).
N. Shulumba, Ph.D. Thesis, Vibrations in Solids: From First Principles Lattice Dynamics to High Temperature Phase Stability Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, Sweden (2015).