Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrothermal Synthesis of Chloride Free Nitrogen Doped TiO2 Nanoparticles
Corresponding Author(s) : A.K. Prodjosantoso
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
In this work, the synthesis and characterization of chloride free nitrogen doped TiO2 nanoparticles have been undertaken. The chloride-free nitrogen doped TiO2 nanoparticles were hydrothermally prepared by mixing acidic ethylene diamine solution with titanium tetraisopropoxide followed by heating at 120 and 150 ºC for 12 h and 180 ºC for 6 h. The resulted solid was isolated, dried, grinded and calcined at 450 ºC for 3 h. The samples were characterized using powder X-ray diffraction, UV-visible reflectance and SEM-EDAX methods. The results indicated that the samples consist of a major component of rutile and minor anatase types. The hydrothermal temperature does not affect to the composition of the product. The N-doped in TiO2 decreases the lattice parameters. The crystallite size of rutile is somewhat bigger than anatase. As expected, all samples are free of chloride.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Rui, S. Wu, C. Peng and H. Ji, Chem. Eng. J., 243, 254 (2014); https://doi.org/10.1016/j.cej.2014.01.010.
- C.C. Chang, Y.C. Chen, T.L. Hsu, C.K. Lin and C.C. Chan, Thin Solid Films, 516, 1743 (2008); https://doi.org/10.1016/j.tsf.2007.05.033.
- C. Tian, S. Huang and Y. Yang, Dye Pigment, 96, 609 (2013); https://doi.org/10.1016/j.dyepig.2012.09.016.
- J. Schneider, M. Matsuoka and M. Takeuchi, Chem. Rev., 114, 9919 (2014); https://doi.org/10.1021/cr5001892.
- J. Zhang, P. Zhou, J. Liu and J. Yu. Phys. Chem., 16, 20382 (2014); https://doi.org/10.1039/C4CP02201G.
- Y. Sang, H. Liu and A. Umar, Chem. Cat. Chem., 7, 559 (2015); https://doi.org/10.1002/cctc.201402812.
- V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann and S.C. Pillai, J. Photochem. Photobiol. C. Photochem. Rev., 25, 1 (2015); https://doi.org/10.1016/j.jphotochemrev.2015.08.003.
- L. Zhao, S.G. Park, B. Magyari-Köpe and Y. Nishi, Appl. Phys. Lett., 102, 083506 (2013); https://doi.org/10.1063/1.4794083.
- K. Kalantari, M. Kalbasi, M. Sohrabi and S.J. Royaee, Ceram. Int., 42, 14834 (2016); https://doi.org/10.1016/j.ceramint.2016.06.117.
- U.G. Akpan and B.H. Hameed, Appl. Catal. A, 375, 1 (2010); https://doi.org/10.1016/j.apcata.2009.12.023.
- G. Cheng and F.J. Stadler, Mater. Lett., 113, 71 (2013); https://doi.org/10.1016/j.matlet.2013.09.025.
- S.Chin, E. Park, M. Kim, J. Jurng, Powder Technol., 201, 171 (2010); https://doi.org/10.1016/j.powtec.2010.03.034.
- Z. Tan, K. Sato and S. Ohara, Adv. Powder Technol., 26, 296 (2015); https://doi.org/10.1016/j.apt.2014.10.011.
- C. Liu, L. Zhang and R. Liu, J. Alloys Compd., 656, 24 (2016); https://doi.org/10.1016/j.jallcom.2015.09.211.
- S.S. Srinivasan, J. Wade, E.K. Stefanakos and Y. Goswami, J. Alloys Compd., 424, 322 (2006); https:// doi:10.1016/j.jallcom.2005.12.064.
- S. Preda, V.S. Teodorescu, A.M. Musuc, C. Andronescu and M. Zaharescu, J. Mater. Res., 28, 294 (2013); https://doi.org/10.1557/jmr.2012.362.
- J. Ananpattarachai, P. Kajitvichyanukul and S. Seraphin, J. Hazard Mater., 168, 253 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.036.
- J.T. Richardson and N. Coute, Catal. Lett., 41, 17 (1996); https://doi.org/10.1007/BF00811706.
- A. Monshi, M.R. Foroughi and M.R. Monshi, World J. Nano Sci. Eng., 2, 154 (2012); https://doi.org/10.4236/wjnse.2012.23020.
- B.A. Hunter, Rietica-A Visual Rietveld Program, International Union of Crystallography, Commission on Powder Diffraction-Newsletter No. 20 (1998).
- D. Wu, M. Long, W. Cai, C. Chen and Y. Wu, J. Alloys Compd., 502, 289 (2010); https://doi.org/10.1016/j.jallcom.2010.04.189.
- Y. Zheng, E. Shi and R. Yuan, Sci. China Ser. E. Technol. Sci., 42, 302 (1999); https://doi.org/10.1007/BF02916777.
- B.B. Viezbicke, S. Patel, B.E. Davis and D.P. Birnie, Phys. Status Solidi, 252, 1700 (2015); https://doi.org/10.1002/pssb.201552007.
- F. Liu, R. Lizio, U.J. Schneider, H.U. Petereit, P. Blakey and A.W. Basit, Int. J. Pharm., 369, 72 (2009); https://doi.org/10.1016/j.ijpharm.2008.10.035
References
Z. Rui, S. Wu, C. Peng and H. Ji, Chem. Eng. J., 243, 254 (2014); https://doi.org/10.1016/j.cej.2014.01.010.
C.C. Chang, Y.C. Chen, T.L. Hsu, C.K. Lin and C.C. Chan, Thin Solid Films, 516, 1743 (2008); https://doi.org/10.1016/j.tsf.2007.05.033.
C. Tian, S. Huang and Y. Yang, Dye Pigment, 96, 609 (2013); https://doi.org/10.1016/j.dyepig.2012.09.016.
J. Schneider, M. Matsuoka and M. Takeuchi, Chem. Rev., 114, 9919 (2014); https://doi.org/10.1021/cr5001892.
J. Zhang, P. Zhou, J. Liu and J. Yu. Phys. Chem., 16, 20382 (2014); https://doi.org/10.1039/C4CP02201G.
Y. Sang, H. Liu and A. Umar, Chem. Cat. Chem., 7, 559 (2015); https://doi.org/10.1002/cctc.201402812.
V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann and S.C. Pillai, J. Photochem. Photobiol. C. Photochem. Rev., 25, 1 (2015); https://doi.org/10.1016/j.jphotochemrev.2015.08.003.
L. Zhao, S.G. Park, B. Magyari-Köpe and Y. Nishi, Appl. Phys. Lett., 102, 083506 (2013); https://doi.org/10.1063/1.4794083.
K. Kalantari, M. Kalbasi, M. Sohrabi and S.J. Royaee, Ceram. Int., 42, 14834 (2016); https://doi.org/10.1016/j.ceramint.2016.06.117.
U.G. Akpan and B.H. Hameed, Appl. Catal. A, 375, 1 (2010); https://doi.org/10.1016/j.apcata.2009.12.023.
G. Cheng and F.J. Stadler, Mater. Lett., 113, 71 (2013); https://doi.org/10.1016/j.matlet.2013.09.025.
S.Chin, E. Park, M. Kim, J. Jurng, Powder Technol., 201, 171 (2010); https://doi.org/10.1016/j.powtec.2010.03.034.
Z. Tan, K. Sato and S. Ohara, Adv. Powder Technol., 26, 296 (2015); https://doi.org/10.1016/j.apt.2014.10.011.
C. Liu, L. Zhang and R. Liu, J. Alloys Compd., 656, 24 (2016); https://doi.org/10.1016/j.jallcom.2015.09.211.
S.S. Srinivasan, J. Wade, E.K. Stefanakos and Y. Goswami, J. Alloys Compd., 424, 322 (2006); https:// doi:10.1016/j.jallcom.2005.12.064.
S. Preda, V.S. Teodorescu, A.M. Musuc, C. Andronescu and M. Zaharescu, J. Mater. Res., 28, 294 (2013); https://doi.org/10.1557/jmr.2012.362.
J. Ananpattarachai, P. Kajitvichyanukul and S. Seraphin, J. Hazard Mater., 168, 253 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.036.
J.T. Richardson and N. Coute, Catal. Lett., 41, 17 (1996); https://doi.org/10.1007/BF00811706.
A. Monshi, M.R. Foroughi and M.R. Monshi, World J. Nano Sci. Eng., 2, 154 (2012); https://doi.org/10.4236/wjnse.2012.23020.
B.A. Hunter, Rietica-A Visual Rietveld Program, International Union of Crystallography, Commission on Powder Diffraction-Newsletter No. 20 (1998).
D. Wu, M. Long, W. Cai, C. Chen and Y. Wu, J. Alloys Compd., 502, 289 (2010); https://doi.org/10.1016/j.jallcom.2010.04.189.
Y. Zheng, E. Shi and R. Yuan, Sci. China Ser. E. Technol. Sci., 42, 302 (1999); https://doi.org/10.1007/BF02916777.
B.B. Viezbicke, S. Patel, B.E. Davis and D.P. Birnie, Phys. Status Solidi, 252, 1700 (2015); https://doi.org/10.1002/pssb.201552007.
F. Liu, R. Lizio, U.J. Schneider, H.U. Petereit, P. Blakey and A.W. Basit, Int. J. Pharm., 369, 72 (2009); https://doi.org/10.1016/j.ijpharm.2008.10.035