Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Investigations on Deactivation of Copper Catalytic Species in Ullmann Cross Coupling Reactions
Corresponding Author(s) : Kamlesh K. Gurjar
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
Copper mediated reactions require higher loading of copper salt and ligand. After few hours, copper active species becomes inactive and further loading of copper salt requires. Various hypothesis proposed in literature, were investigated. DFT studies were performed on more than 20 intermediate species. In present computational studies, it was found that ligation of carbonate base to active copper species is actual reason for deactivation. Carbonate and nucleophile are competitive ligand in these reactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Ullmann, Ber. Dtsch. Chem. Ges., 37, 853 (1904); https://doi.org/10.1002/cber.190403701141.
- A. Klapars, J.C. Antilla, X. Huang and S.L. Buchwald, J. Am. Chem. Soc., 123, 7727 (2001); https://doi.org/10.1021/ja016226z.
- H.-J. Cristau, P.P. Cellier, J.-F. Spindler and M. Taillefer, Chem. Eur. J., 10, 5607 (2004); https://doi.org/10.1002/chem.200400582.
- G. Lefèvre, G. Franc, A. Tlili, C. Adamo, M. Taillefer, I. Ciofini and A. Jutand, Organometallics, 31, 7694 (2012); https://doi.org/10.1021/om300636f.
- J. Bariwal and E. Van der Eycken, Chem. Soc. Rev., 42, 9283 (2013); https://doi.org/10.1039/c3cs60228a.
- J. Lee and J.S. Panek, Copper-Mediated Cross-Coupling Reactions, John Wiley & Sons, Inc., pp. 589–641 (2013); https://doi.org/10.1002/9781118690659.ch16.
- K. Okano, H. Tokuyama and T. Fukuyama, Chem. Commun., 50, 13650 (2014); https://doi.org/10.1039/C4CC03895A.
- D. Pappo, Copper-Mediated Cross-Coupling Reactions, John Wiley & Sons, Inc., pp. 643–682 (2013); https://doi.org/10.1002/9781118690659.ch17.
- G. Evano, N. Blanchard and M. Toumi, Chem. Rev., 108, 3054 (2008); https://doi.org/10.1021/cr8002505.
- C. Sambiagio, S.P. Marsden, A.J. Blacker and P.C. McGowan, Chem. Soc. Rev., 43, 3525 (2014); https://doi.org/10.1039/C3CS60289C.
- I.P. Beletskaya and A.V. Cheprakov, Organometallics, 31, 7753 (2012); https://doi.org/10.1021/om300683c.
- K.K. Gurjar and R.K. Sharma, ChemCatChem, 9, 862 (2017); https://doi.org/10.1002/cctc.201601174.
- S. Sung, D. Sale, D.C. Braddock, A. Armstrong, C. Brennan and R.P. Davies, ACS Catal., 6, 3965 (2016); https://doi.org/10.1021/acscatal.6b00504.
- Q.A. Lo, D. Sale, D.C. Braddock and R.P. Davies, ACS Catal., 8, 101 (2018); https://doi.org/10.1021/acscatal.7b03664.
- G.J. Sherborne, S. Adomeit, R. Menzel, J. Rabeah, A. Bruckner, M.R. Fielding, C.E. Willans and B.N. Nguyen, Chem. Sci., 8, 7203 (2017); https://doi.org/10.1039/C7SC02859H.
- M. Rovira, L. Jasikova, E. Andris, F. Acuna-Pares, M. Soler, I. Guell, M.-Z. Wang, L. Gomez, J.M. Luis, J. Roithova and X. Ribas, Chem. Commun., 53, 8786 (2017); https://doi.org/10.1039/C7CC04491G.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2013).
- J.W. Tye, Z. Weng, A.M. Johns, C.D. Incarvito and J.F. Hartwig, J. Am. Chem. Soc., 130, 9971 (2008); https://doi.org/10.1021/ja076668w.
- M. Rovira, M. Soler, I. Güell, M.-Z. Wang, L. Gómez and X. Ribas, J. Org. Chem., 81, 7315 (2016); https://doi.org/10.1021/acs.joc.6b01035.
- G.O. Jones, P. Liu, K.N. Houk and S.L. Buchwald, J. Am. Chem. Soc., 132, 6205 (2010); https://doi.org/10.1021/ja100739h.
- E. Sperotto, G.P.M. van Klink, G. van Koten and J.G. de Vries, Dalton Trans., 39, 10338 (2010); https://doi.org/10.1039/c0dt00674b.
References
F. Ullmann, Ber. Dtsch. Chem. Ges., 37, 853 (1904); https://doi.org/10.1002/cber.190403701141.
A. Klapars, J.C. Antilla, X. Huang and S.L. Buchwald, J. Am. Chem. Soc., 123, 7727 (2001); https://doi.org/10.1021/ja016226z.
H.-J. Cristau, P.P. Cellier, J.-F. Spindler and M. Taillefer, Chem. Eur. J., 10, 5607 (2004); https://doi.org/10.1002/chem.200400582.
G. Lefèvre, G. Franc, A. Tlili, C. Adamo, M. Taillefer, I. Ciofini and A. Jutand, Organometallics, 31, 7694 (2012); https://doi.org/10.1021/om300636f.
J. Bariwal and E. Van der Eycken, Chem. Soc. Rev., 42, 9283 (2013); https://doi.org/10.1039/c3cs60228a.
J. Lee and J.S. Panek, Copper-Mediated Cross-Coupling Reactions, John Wiley & Sons, Inc., pp. 589–641 (2013); https://doi.org/10.1002/9781118690659.ch16.
K. Okano, H. Tokuyama and T. Fukuyama, Chem. Commun., 50, 13650 (2014); https://doi.org/10.1039/C4CC03895A.
D. Pappo, Copper-Mediated Cross-Coupling Reactions, John Wiley & Sons, Inc., pp. 643–682 (2013); https://doi.org/10.1002/9781118690659.ch17.
G. Evano, N. Blanchard and M. Toumi, Chem. Rev., 108, 3054 (2008); https://doi.org/10.1021/cr8002505.
C. Sambiagio, S.P. Marsden, A.J. Blacker and P.C. McGowan, Chem. Soc. Rev., 43, 3525 (2014); https://doi.org/10.1039/C3CS60289C.
I.P. Beletskaya and A.V. Cheprakov, Organometallics, 31, 7753 (2012); https://doi.org/10.1021/om300683c.
K.K. Gurjar and R.K. Sharma, ChemCatChem, 9, 862 (2017); https://doi.org/10.1002/cctc.201601174.
S. Sung, D. Sale, D.C. Braddock, A. Armstrong, C. Brennan and R.P. Davies, ACS Catal., 6, 3965 (2016); https://doi.org/10.1021/acscatal.6b00504.
Q.A. Lo, D. Sale, D.C. Braddock and R.P. Davies, ACS Catal., 8, 101 (2018); https://doi.org/10.1021/acscatal.7b03664.
G.J. Sherborne, S. Adomeit, R. Menzel, J. Rabeah, A. Bruckner, M.R. Fielding, C.E. Willans and B.N. Nguyen, Chem. Sci., 8, 7203 (2017); https://doi.org/10.1039/C7SC02859H.
M. Rovira, L. Jasikova, E. Andris, F. Acuna-Pares, M. Soler, I. Guell, M.-Z. Wang, L. Gomez, J.M. Luis, J. Roithova and X. Ribas, Chem. Commun., 53, 8786 (2017); https://doi.org/10.1039/C7CC04491G.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2013).
J.W. Tye, Z. Weng, A.M. Johns, C.D. Incarvito and J.F. Hartwig, J. Am. Chem. Soc., 130, 9971 (2008); https://doi.org/10.1021/ja076668w.
M. Rovira, M. Soler, I. Güell, M.-Z. Wang, L. Gómez and X. Ribas, J. Org. Chem., 81, 7315 (2016); https://doi.org/10.1021/acs.joc.6b01035.
G.O. Jones, P. Liu, K.N. Houk and S.L. Buchwald, J. Am. Chem. Soc., 132, 6205 (2010); https://doi.org/10.1021/ja100739h.
E. Sperotto, G.P.M. van Klink, G. van Koten and J.G. de Vries, Dalton Trans., 39, 10338 (2010); https://doi.org/10.1039/c0dt00674b.