Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
FTIR Spectroscopic Study of Heat-Induced β-Lactoglobulin Solution under Flow Field
Corresponding Author(s) : R.K. Sharma
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
Effect of stirring on the secondary structure of amyloid fibrillogenesis of β-lactoglobulin (βLG) at pH 2 and at pH 7 with and without glucose was studied. Fibrillogenesis at pH 2 was carried out by heating the 4w % β-lactoglobulin and at pH 7 by heating the 0.30 mM β-lactoglobulin in 0.1 M, pH 7 sodium phosphate buffer solution with and without glucose (37.5 mM) for 24 h under stirring (250 and 474 rpm) conditions. For control samples, β-lactoglobulin solutions were incubated under unstirred condition at pH 2 and pH 7. The secondary structure of the amyloid fibrils which corresponds the β-sheet structure was studied by using Fourier transform infrared (FTIR) spectroscopy revealed that the stirring does not affect the secondary structure of the β-lactoglobulin fibrils at pH 2 as well as pH 7 with and without glucose.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.D. Sipe and A.S. Cohen, J. Struct. Biol., 130, 88 (2000); https://doi.org/10.1006/jsbi.2000.4221.
- A. Aguzzi, Nature, 459, 924 (2009); https://doi.org/10.1038/459924a.
- P.T. Lansbury and H.A. Lashuel, Nature, 443, 774 (2006); https://doi.org/10.1038/nature05290.
- F. Chiti and C.M. Dobson, Annu. Rev. Biochem., 75, 333 (2006); https://doi.org/10.1146/annurev.biochem.75.101304.123901.
- D.R. Flower, A.C.T. North and C.E. Sansom, Biochim. Biophys. Acta, 1482, 9 (2002); https://doi.org/10.1016/S0167-4838(00)00148-5.
- S.G. Hambling, A.S. McAlpine and L. Sawyer, ed. P.F. Fox, ß-Lactoglobulin, In: Advanced Dairy Chemistry: Proteins, Elsevier Applied Science, Amsterdam, vol. 1, pp 141-190 (1992).
- M.Z. Papiz, L. Sawyer, E.E. Eliopoulos, A.C.T. North, J.B.C. Findlay, R. Sivaprasadarao, T.A. Jones, M.E. Newcomer and P.J. Kraulis, Nature, 324, 383 (1986); https://doi.org/10.1038/324383a0.
- R. Virchow, Virchows Arch. Pathol. Anat., 8, 364 (1855); https://doi.org/10.1007/BF01935311.
- S. Uhrinova, M.H. Smith, G.B. Jameson, D. Uhrin, L. Sawyer and P.N. Barlow, Biochem., 39, 3565 (2000); https://doi.org/10.1021/bi992629o.
- K. Sakurai, M. Oobatake and Y. Goto, Protein Sci., 10, 2325 (2001); https://doi.org/10.1110/ps.17001.
- J. Simons, H.A. Kosters, R.W. Visschers and H.H.J. de Jongh, Arch. Biochem. Biophys., 406, 143 (2002); https://doi.org/10.1016/S0003-9861(02)00429-0.
- R. Bauer, S. Hansen and L. Øgendal, Int. Dairy J., 8, 105 (1998); https://doi.org/10.1016/S0958-6946(98)00027-2.
- L.N. Arnaudov, R. de Vries, H. Ippel and C.P.M. van Mierlo, Biomacromolecules, 4, 1614 (2003); https://doi.org/10.1021/bm034096b.
- W.S. Gosal, A.H. Clark and S.B. Ross-Murphy, Biomacromolecules, 5, 2408 (2004); https://doi.org/10.1021/bm049659d.
- D. Hamada and C.M. Dobson, Protein Sci., 11, 2417 (2002); https://doi.org/10.1110/ps.0217702.
- J.-M. Jung, G. Savin, M. Pouzot, C. Schmitt and R. Mezzenga, Biomacromolecules, 9, 2477 (2008); https://doi.org/10.1021/bm800502j.
- S.R. Euston, S. Ur-Rehman and G. Costello, Food Hydrocoll., 21, 1081 (2007); https://doi.org/10.1016/j.foodhyd.2006.07.018.
- C. Veerman, H. Ruis, L.M.C. Sagis and E. van der Linden, Biomacromolecules, 3, 869 (2002); https://doi.org/10.1021/bm025533+.
- P. Aymard, T. Nicolai, D. Durand and A. Clark, Macromolecules, 32, 2542 (1999); https://doi.org/10.1021/ma981689j.
- M.R.H. Krebs, D.K. Wilkins, E.W. Chung, M.C. Pitkeathly, A.K. Chamberlain, J. Zurdo, C.V. Robinson and C.M. Dobson, J. Mol. Biol., 300, 541 (2000); https://doi.org/10.1006/jmbi.2000.3862.
- S.G. Bolder, L.M.C. Sagis, P. Venema and E. van der Linden, J. Agric. Food Chem., 55, 5661 (2007); https://doi.org/10.1021/jf063351r.
- E.K. Hill, B. Krebs, D.G. Goodall, G.J. Howlett and D.E. Dunstan, Biomacromolecules, 7, 10 (2006); https://doi.org/10.1021/bm0505078.
- P.B. Stathopulos, G.A. Scholz, Y.-M. Hwang, J.A.O. Rumfeldt, J.R. Lepock and E.M. Meiering, Protein Sci., 13, 3017 (2004); https://doi.org/10.1110/ps.04831804.
- E.K. Hill, B. Krebs, D.G. Goodall, G.J. Howlett and D.E. Dunstan, Biomacromolecules, 7, 10 (2006); https://doi.org/10.1021/bm0505078.
- S.G. Bolder, L.M.C. Sagis, P. Venema and E. van der Linden, J. Agric. Food Chem., 55, 5661 (2007); https://doi.org/10.1021/jf063351r.
- C. Akkermans, P. Venema, S.S. Rogers, A.J. van der Goot, R.M. Boom and E. van der Linden, Food Biophys., 1, 144 (2006); https://doi.org/10.1007/s11483-006-9012-5.
- R.K. Sharma, K. Furusawa, A. Fukui and N. Sasaki, Int. J. Biol. Macromol., 70, 490 (2014); https://doi.org/10.1016/j.ijbiomac.2014.06.034.
- R.K. Sharma, Ph.D. Thesis, Investigation on the Effect of Flow Field on the Amyloid Fibril Formation, Hokkaido University, Sapporo, Japan (2014).
- T. Lefèvre and M. Subirade, Int. J. Food Sci. Technol., 34, 419 (1999); https://doi.org/10.1046/j.1365-2621.1999.00311.x.
- T. Miyazawa and E.R. Blout, J. Am. Chem. Soc., 83, 712 (1961); https://doi.org/10.1021/ja01464a042.
- D.M. Byler and H. Susi, Biopolymers, 25, 469 (1986); https://doi.org/10.1002/bip.360250307.
- H. Hiramatsu and T. Kitagawa, Biochim. Biophys. Acta, 1753, 100 (2005); https://doi.org/10.1016/j.bbapap.2005.07.008.
- A.S. Eissa, C. Puhl, J.F. Kadla and S.A. Khan, Biomacromolecules, 7, 1707 (2006); https://doi.org/10.1021/bm050928p.
- A.F. Allain, P. Paquin and M. Subirade, Int. J. Biol. Macromol., 26, 337 (1999); https://doi.org/10.1016/S0141-8130(99)00104-X.
- D. Oboroceanu, L. Wang, A. Brodkorb, E. Magner and M.A.E. Auty, J. Agric. Food Chem., 58, 3667 (2010); https://doi.org/10.1021/jf9042908.
- T. Lefevre and M. Subirade, Biopolymers, 54, 578 (2000); https://doi.org/10.1002/1097-0282(200012)54:7<578::AIDBIP100>3.0.CO;2-2.
- F. Dousseau and M. Pezolet, Biochemistry, 29, 8771 (1990); https://doi.org/10.1021/bi00489a038.
- F.N. Fu, D.B. Deoliveira, W.A. Trumble, H.K. Sarkar and B.R. Singh, Appl. Spectrosc., 48, 1432 (1994); https://doi.org/10.1366/0003702944028065.
References
J.D. Sipe and A.S. Cohen, J. Struct. Biol., 130, 88 (2000); https://doi.org/10.1006/jsbi.2000.4221.
A. Aguzzi, Nature, 459, 924 (2009); https://doi.org/10.1038/459924a.
P.T. Lansbury and H.A. Lashuel, Nature, 443, 774 (2006); https://doi.org/10.1038/nature05290.
F. Chiti and C.M. Dobson, Annu. Rev. Biochem., 75, 333 (2006); https://doi.org/10.1146/annurev.biochem.75.101304.123901.
D.R. Flower, A.C.T. North and C.E. Sansom, Biochim. Biophys. Acta, 1482, 9 (2002); https://doi.org/10.1016/S0167-4838(00)00148-5.
S.G. Hambling, A.S. McAlpine and L. Sawyer, ed. P.F. Fox, ß-Lactoglobulin, In: Advanced Dairy Chemistry: Proteins, Elsevier Applied Science, Amsterdam, vol. 1, pp 141-190 (1992).
M.Z. Papiz, L. Sawyer, E.E. Eliopoulos, A.C.T. North, J.B.C. Findlay, R. Sivaprasadarao, T.A. Jones, M.E. Newcomer and P.J. Kraulis, Nature, 324, 383 (1986); https://doi.org/10.1038/324383a0.
R. Virchow, Virchows Arch. Pathol. Anat., 8, 364 (1855); https://doi.org/10.1007/BF01935311.
S. Uhrinova, M.H. Smith, G.B. Jameson, D. Uhrin, L. Sawyer and P.N. Barlow, Biochem., 39, 3565 (2000); https://doi.org/10.1021/bi992629o.
K. Sakurai, M. Oobatake and Y. Goto, Protein Sci., 10, 2325 (2001); https://doi.org/10.1110/ps.17001.
J. Simons, H.A. Kosters, R.W. Visschers and H.H.J. de Jongh, Arch. Biochem. Biophys., 406, 143 (2002); https://doi.org/10.1016/S0003-9861(02)00429-0.
R. Bauer, S. Hansen and L. Øgendal, Int. Dairy J., 8, 105 (1998); https://doi.org/10.1016/S0958-6946(98)00027-2.
L.N. Arnaudov, R. de Vries, H. Ippel and C.P.M. van Mierlo, Biomacromolecules, 4, 1614 (2003); https://doi.org/10.1021/bm034096b.
W.S. Gosal, A.H. Clark and S.B. Ross-Murphy, Biomacromolecules, 5, 2408 (2004); https://doi.org/10.1021/bm049659d.
D. Hamada and C.M. Dobson, Protein Sci., 11, 2417 (2002); https://doi.org/10.1110/ps.0217702.
J.-M. Jung, G. Savin, M. Pouzot, C. Schmitt and R. Mezzenga, Biomacromolecules, 9, 2477 (2008); https://doi.org/10.1021/bm800502j.
S.R. Euston, S. Ur-Rehman and G. Costello, Food Hydrocoll., 21, 1081 (2007); https://doi.org/10.1016/j.foodhyd.2006.07.018.
C. Veerman, H. Ruis, L.M.C. Sagis and E. van der Linden, Biomacromolecules, 3, 869 (2002); https://doi.org/10.1021/bm025533+.
P. Aymard, T. Nicolai, D. Durand and A. Clark, Macromolecules, 32, 2542 (1999); https://doi.org/10.1021/ma981689j.
M.R.H. Krebs, D.K. Wilkins, E.W. Chung, M.C. Pitkeathly, A.K. Chamberlain, J. Zurdo, C.V. Robinson and C.M. Dobson, J. Mol. Biol., 300, 541 (2000); https://doi.org/10.1006/jmbi.2000.3862.
S.G. Bolder, L.M.C. Sagis, P. Venema and E. van der Linden, J. Agric. Food Chem., 55, 5661 (2007); https://doi.org/10.1021/jf063351r.
E.K. Hill, B. Krebs, D.G. Goodall, G.J. Howlett and D.E. Dunstan, Biomacromolecules, 7, 10 (2006); https://doi.org/10.1021/bm0505078.
P.B. Stathopulos, G.A. Scholz, Y.-M. Hwang, J.A.O. Rumfeldt, J.R. Lepock and E.M. Meiering, Protein Sci., 13, 3017 (2004); https://doi.org/10.1110/ps.04831804.
E.K. Hill, B. Krebs, D.G. Goodall, G.J. Howlett and D.E. Dunstan, Biomacromolecules, 7, 10 (2006); https://doi.org/10.1021/bm0505078.
S.G. Bolder, L.M.C. Sagis, P. Venema and E. van der Linden, J. Agric. Food Chem., 55, 5661 (2007); https://doi.org/10.1021/jf063351r.
C. Akkermans, P. Venema, S.S. Rogers, A.J. van der Goot, R.M. Boom and E. van der Linden, Food Biophys., 1, 144 (2006); https://doi.org/10.1007/s11483-006-9012-5.
R.K. Sharma, K. Furusawa, A. Fukui and N. Sasaki, Int. J. Biol. Macromol., 70, 490 (2014); https://doi.org/10.1016/j.ijbiomac.2014.06.034.
R.K. Sharma, Ph.D. Thesis, Investigation on the Effect of Flow Field on the Amyloid Fibril Formation, Hokkaido University, Sapporo, Japan (2014).
T. Lefèvre and M. Subirade, Int. J. Food Sci. Technol., 34, 419 (1999); https://doi.org/10.1046/j.1365-2621.1999.00311.x.
T. Miyazawa and E.R. Blout, J. Am. Chem. Soc., 83, 712 (1961); https://doi.org/10.1021/ja01464a042.
D.M. Byler and H. Susi, Biopolymers, 25, 469 (1986); https://doi.org/10.1002/bip.360250307.
H. Hiramatsu and T. Kitagawa, Biochim. Biophys. Acta, 1753, 100 (2005); https://doi.org/10.1016/j.bbapap.2005.07.008.
A.S. Eissa, C. Puhl, J.F. Kadla and S.A. Khan, Biomacromolecules, 7, 1707 (2006); https://doi.org/10.1021/bm050928p.
A.F. Allain, P. Paquin and M. Subirade, Int. J. Biol. Macromol., 26, 337 (1999); https://doi.org/10.1016/S0141-8130(99)00104-X.
D. Oboroceanu, L. Wang, A. Brodkorb, E. Magner and M.A.E. Auty, J. Agric. Food Chem., 58, 3667 (2010); https://doi.org/10.1021/jf9042908.
T. Lefevre and M. Subirade, Biopolymers, 54, 578 (2000); https://doi.org/10.1002/1097-0282(200012)54:7<578::AIDBIP100>3.0.CO;2-2.
F. Dousseau and M. Pezolet, Biochemistry, 29, 8771 (1990); https://doi.org/10.1021/bi00489a038.
F.N. Fu, D.B. Deoliveira, W.A. Trumble, H.K. Sarkar and B.R. Singh, Appl. Spectrosc., 48, 1432 (1994); https://doi.org/10.1366/0003702944028065.