Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Facile Synthesis of Graphene Oxide-Nano Titania Composites and Evaluation for Visible Light Assisted Photocatalytic Degradation of Rhodamine B
Corresponding Author(s) : Soma Sekhar Ryali
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
Nano titania composite materials exfoliated with varying weight percentage of graphene oxide were synthesized and evaluated for visible light assisted photocatalytic degradation of rhodamine-B. Titanium tetrachloride was hydrolyzed in water medium under organic solvent free conditions followed by ultrasonic addition of the as prepared 1 % aqueous solution of graphene oxide. The morphology and structural properties of the composite materials (1, 2, 5, 10, 15 wt % graphene oxide-nano titania) prepared has been characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectra (UV-Vis DRS), high resolution transmission electron microscope (HRTEM), field emission-scanning electron microscopy (FESEM) and UV-visible spectroscopy. A superior activity was observed with 10 mg of 10 % graphene oxide-nano titania composite material. The 100 % degradation of rhodamine-B was observed in 60 min and other optimum conditions were established.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Zhao, G. Sheng, C. Chen and X. Wang, Appl. Catal. B, 111-112, 303 (2012); https://doi.org/10.1016/j.apcatb.2011.10.012.
- R.F. Howe, Dev. Chem. Eng. Miner. Process., 6, 55 (1998); https://doi.org/10.1002/apj.5500060105.
- S.T. Aruna and K.C. Patil, J. Mater. Synth. Process., 4, 175 (1996).
- D.W. Bahnemann, Isr. J. Chem., 33, 115 (1993); https://doi.org/10.1002/ijch.199300017.
- T.D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.-D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 170, 226 (2011); https://doi.org/10.1016/j.cej.2011.03.060.
- M.M. Mahlambi, C.J. Ngila and B.B. Mamba, J. Nanomater., Article ID 790173 (2015); https://doi.org/10.1155/2015/790173.
- T.N. Murthy, P. Suresh, A.M. Umabala and A.V.P. Rao, Int. J. Recent Scientific Res., 7, 10895 (2016).
- K. Zhou, Y. Zhu, X. Yang, X. Jiang and C. Li, New J. Chem., 35, 353 (2010); https://doi.org/10.1039/C0NJ00623H.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
- X. Meng, L. Jiang, W. Wang and Z. Zhang, Int. J. Photoenergy, Article ID 747024 (2015); https://doi.org/10.1155/2015/747024.
- M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì, R. Molinari, L. Palmisano and M. Schiavello, J. Phys. Chem., 108, 3303 (2004); https://doi.org/10.1021/jp0312924.
- M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì and L. Palmisano, Colloids Surf. A, 265, 23 (2005); https://doi.org/10.1016/j.colsurfa.2004.11.048.
- G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, Carbon, 49, 2693 (2011); https://doi.org/10.1016/j.carbon.2011.02.059.
- G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); https://doi.org/10.1021/nn800251f.
- E.R. Nestmann, G.R. Douglas, T.I. Matula, C.E. Grant and D.J. Kowbel, Cancer Res., 39, 4412 (1979).
- K. Shen and M.A. Gondal, J. Saudi Chem. Soc., 21, S120 (2017); https://doi.org/10.1016/j.jscs.2013.11.005.
- H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k.
- B. Paulchamy, G. Arthi and B.D. Lignesh, J. Nanomed. Nanotechnol., 6, 253 (2015); https://doi.org/10.4172/2157-7439.1000253.
- K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh and M. Yoshimura, Bull. Mater. Sci., 29, 433 (2006); https://doi.org/10.1007/BF02914073.
- E.T. Soares, M.A. Lansarin and C.C. Moro, Braz. J. Chem. Eng., 24, 354 (2007); https://doi.org/10.1590/S0104-66322007000100003.
- H.J. Huang, Y.S. Zhen, P.-Y. Li, S.-D. Tzeng and H.-P. Chiang, Opt. Express, 24, 15603 (2016); https://doi.org/10.1364/OE.24.015603.
- W.-K. Jo and H.-J. Kang, Powder Technol., 250, 115 (2013); https://doi.org/10.1016/j.powtec.2013.10.017.
References
D. Zhao, G. Sheng, C. Chen and X. Wang, Appl. Catal. B, 111-112, 303 (2012); https://doi.org/10.1016/j.apcatb.2011.10.012.
R.F. Howe, Dev. Chem. Eng. Miner. Process., 6, 55 (1998); https://doi.org/10.1002/apj.5500060105.
S.T. Aruna and K.C. Patil, J. Mater. Synth. Process., 4, 175 (1996).
D.W. Bahnemann, Isr. J. Chem., 33, 115 (1993); https://doi.org/10.1002/ijch.199300017.
T.D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.-D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 170, 226 (2011); https://doi.org/10.1016/j.cej.2011.03.060.
M.M. Mahlambi, C.J. Ngila and B.B. Mamba, J. Nanomater., Article ID 790173 (2015); https://doi.org/10.1155/2015/790173.
T.N. Murthy, P. Suresh, A.M. Umabala and A.V.P. Rao, Int. J. Recent Scientific Res., 7, 10895 (2016).
K. Zhou, Y. Zhu, X. Yang, X. Jiang and C. Li, New J. Chem., 35, 353 (2010); https://doi.org/10.1039/C0NJ00623H.
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
X. Meng, L. Jiang, W. Wang and Z. Zhang, Int. J. Photoenergy, Article ID 747024 (2015); https://doi.org/10.1155/2015/747024.
M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì, R. Molinari, L. Palmisano and M. Schiavello, J. Phys. Chem., 108, 3303 (2004); https://doi.org/10.1021/jp0312924.
M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì and L. Palmisano, Colloids Surf. A, 265, 23 (2005); https://doi.org/10.1016/j.colsurfa.2004.11.048.
G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, Carbon, 49, 2693 (2011); https://doi.org/10.1016/j.carbon.2011.02.059.
G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); https://doi.org/10.1021/nn800251f.
E.R. Nestmann, G.R. Douglas, T.I. Matula, C.E. Grant and D.J. Kowbel, Cancer Res., 39, 4412 (1979).
K. Shen and M.A. Gondal, J. Saudi Chem. Soc., 21, S120 (2017); https://doi.org/10.1016/j.jscs.2013.11.005.
H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k.
B. Paulchamy, G. Arthi and B.D. Lignesh, J. Nanomed. Nanotechnol., 6, 253 (2015); https://doi.org/10.4172/2157-7439.1000253.
K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh and M. Yoshimura, Bull. Mater. Sci., 29, 433 (2006); https://doi.org/10.1007/BF02914073.
E.T. Soares, M.A. Lansarin and C.C. Moro, Braz. J. Chem. Eng., 24, 354 (2007); https://doi.org/10.1590/S0104-66322007000100003.
H.J. Huang, Y.S. Zhen, P.-Y. Li, S.-D. Tzeng and H.-P. Chiang, Opt. Express, 24, 15603 (2016); https://doi.org/10.1364/OE.24.015603.
W.-K. Jo and H.-J. Kang, Powder Technol., 250, 115 (2013); https://doi.org/10.1016/j.powtec.2013.10.017.