Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Contribution to Modelling the Effect of Temperature on Removal of Nickel Ions by Adsorption on Nano-Bentonite
Corresponding Author(s) : F. Alakhras
Asian Journal of Chemistry,
Vol. 30 No. 5 (2018): Vol 30 Issue 5, 2018
Abstract
Nano-bentonite was investigated as a prospect sorbent for the elimination of nickel ions from aqueous solutions. At optimum conditions; pH 6, Ni(II) primary concentration 100 mg/L and adsorbent dosage 0.5 g, the achieved highest adsorption capability was 39.06 mg/g. The isothermal data were modeled with Langmuir and Freundlich isotherm models. Thermodynamic data revealed the spontaneity of target species adsorption onto used adsorbent, raise in entropy change at the solid-liquid boundary and endothermic process. The purpose of this study was to extend primary and secondary prototypes to express the effect of temperature (from 20 to 50 °C) on the sorption of nickel ions onto bentonite surface. Proposed models could be integrated to suggest some practical equations for different experimental conditions and can be exploited for further prediction and interesting additional interpretations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.A. Taha, A.M. Ahmed, H.H. Abdel Rahman, F.M. Abouzeid and M.O. Abdel Maksoud, J. Dispers. Sci. Technol., 38, 757 (2017); https://doi.org/10.1080/01932691.2016.1194211.
- A.H.M. Veeken and H.V.M. Hamelers, Water Sci. Technol., 40, 129 (1999); https://doi.org/10.1016/S0273-1223(99)00373-X.
- S.A. Sadeek, N.A. Negm, H.H.H. Hefni and M.M. Abdel Wahab, Int. J. Biol. Macromol., 81, 400 (2015); https://doi.org/10.1016/j.ijbiomac.2015.08.031.
- Y. Zhou, Z. Zhang, J. Zhang and S. Xia, J. Environ. Sci., 45, 248 (2016); https://doi:10.1016/j.jes.2016.03.007.
- A. Dabrowski, Z. Hubicki, P. Podkoscielny and E. Robens, Chemosphere, 56, 91 (2004); https://doi.org/10.1016/j.chemosphere.2004.03.006.
- Z.-Y. Yao, J.-H. Qi and L.-H. Wang, J. Hazard. Mater., 174, 137 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.027.
- N. Rangsayatorn, P. Pokethitiyook, E.S. Upatham and G.R. Lanza, Environ. Int., 30, 57 (2004); https://doi:10.1016/S0160-4120(03)00146-6.
- N. Meunier, J. Laroulandie, J.F. Blais and R.D. Tyagi, Bioresour. Technol., 90, 255 (2003); https://doi.org/10.1016/S0960-8524(03)00129-9.
- G. Yan and T. Viraraghavan, Bioresour. Technol., 78, 243 (2001); https://doi.org/10.1016/S0960-8524(01)00020-7.
- U. Farooq, J.A. Kozinski, M.A. Khan and M. Athar, Bioresour. Technol., 101, 5043 (2010); https://doi.org/10.1016/j.biortech.2010.02.030.
- B.K. Reck, D.B. Müller, K. Rostkowski and T.E. Graedel, Environ. Sci. Technol., 42, 3394 (2008); https://doi:10.1021/es072108l.
- A. Perosa and P. Tundo, Ind. Eng. Chem. Res., 44, 8535 (2005); https://doi:10.1021/ie0489251.
- A.K. Shukla, S. Venugopalan and B. Hariprakash, J. Power Sources, 100, 125 (2001); https://doi.org/10.1016/S0378-7753(01)00890-4.
- E. Denkhaus and K. Salnikow, Crit. Rev. Oncol. Hematol., 42, 35 (2002); https://doi.org/10.1016/S1040-8428(01)00214-1.
- K.S. Kasprzak, F.W. Sunderman and K. Salnikow, Mutat. Res., 533, 67 (2003); https://doi.org/10.1016/j.mrfmmm.2003.08.021.
- M. Cempel and G. Nikel, Pol. J. Environ. Stud., 15, 375 (2006);
- J.J.M. Orfao, A.I.M. Silva, J.C.V. Pereira, S.A. Barata, I.M. Fonseca, P.C.C. Faria and M.F.R. Pereira, J. Colloid Interface Sci., 296, 480 (2006); https://doi.org/10.1016/j.jcis.2005.09.063.
- S. Hashemian, Asian J. Chem., 21, 3622 (2009).
- S. Ben-Ali, I. Jaouali, S. Souissi-Najar and A. Ouederni, J. Clean. Prod., 142, 3809 (2017); https://doi.org/10.1016/j.jclepro.2016.10.081.
- A.S. Özcan and A. Özcan, J. Colloid Interface Sci., 276, 39 (2004); https://doi.org/10.1016/j.jcis.2004.03.043.
- A.S. Özcan, O. Gok and A. Özcan, J. Hazard. Mater., 161, 499 (2009); https://doi.org/10.1016/j.jhazmat.2008.04.002.
- R. Naseem and S.S. Tahir, Water Res., 35, 3982 (2001); https://doi.org/10.1016/S0043-1354(01)00130-0.
- Z.N. Garba and A.A. Rahim, Process Saf. Environ. Prot., 102, 54 (2016); https://doi.org/10.1016/j.psep.2016.02.006.
- H. Singh, G. Chauhan, A.K. Jain and S.K. Sharma, J. Environ. Chem. Eng., 5, 122 (2017); https://doi.org/10.1016/j.jece.2016.11.030.
- N. Ayawei, A.N. Ebelegi and D. Wankasi, J. Chem., Article ID 3039817 (2017); https://doi.org/10.1155/2017/3039817.
- M.G.A. Vieira, A.F. Almeida-Neto, M.L. Gimenes and M.G.C. da Silva, J. Hazard. Mater., 177, 362 (2010); https://doi.org/10.1016/j.jhazmat.2009.12.040.
- S.S. Al-Shahrani, Int. J. Eng. Technol., 12, 14 (2012).
- C.M. Futalan, W.-C. Tsai, S.-S. Lin, K.-J. Hsien, M.L. Dalida and M.-W. Wan, Sustain. Environ. Res., 22, 345, (2012).
- B.N. Sandeep and S. Suresha, Int. J. Environ. Sci., 4, 113 (2013); https://doi:10.6088/ijes.2013040100012.
- M.G. Bhagyalakshmi and P.N. Sarma, J. Chem. Pharm. Res., 7, 140 (2015);
- E. Alvarez-Ayo, A. Garcia-Sanchez and X. Queol, Water Res., 37, 4885 (2003); https://doi.org/10.1016/j.watres.2003.08.009.
- N.M. Alandis, O.A. Aldaye, W.K. Mekhemer, J.A. Hefne and H.A. Jakhob, J. Dispers. Sci. Technol., 31, 1526 (2010); https://doi.org/10.1080/01932690903294097.
- M.-H. Baek and C.O. Ljabemi, J. Hazard. Mater., 176, 820 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.110.
- L. Bulgariu, D. Bulgariu and M. Macoveanu, Environ. Eng. Manage. J., 9, 667 (2010)
References
A.A. Taha, A.M. Ahmed, H.H. Abdel Rahman, F.M. Abouzeid and M.O. Abdel Maksoud, J. Dispers. Sci. Technol., 38, 757 (2017); https://doi.org/10.1080/01932691.2016.1194211.
A.H.M. Veeken and H.V.M. Hamelers, Water Sci. Technol., 40, 129 (1999); https://doi.org/10.1016/S0273-1223(99)00373-X.
S.A. Sadeek, N.A. Negm, H.H.H. Hefni and M.M. Abdel Wahab, Int. J. Biol. Macromol., 81, 400 (2015); https://doi.org/10.1016/j.ijbiomac.2015.08.031.
Y. Zhou, Z. Zhang, J. Zhang and S. Xia, J. Environ. Sci., 45, 248 (2016); https://doi:10.1016/j.jes.2016.03.007.
A. Dabrowski, Z. Hubicki, P. Podkoscielny and E. Robens, Chemosphere, 56, 91 (2004); https://doi.org/10.1016/j.chemosphere.2004.03.006.
Z.-Y. Yao, J.-H. Qi and L.-H. Wang, J. Hazard. Mater., 174, 137 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.027.
N. Rangsayatorn, P. Pokethitiyook, E.S. Upatham and G.R. Lanza, Environ. Int., 30, 57 (2004); https://doi:10.1016/S0160-4120(03)00146-6.
N. Meunier, J. Laroulandie, J.F. Blais and R.D. Tyagi, Bioresour. Technol., 90, 255 (2003); https://doi.org/10.1016/S0960-8524(03)00129-9.
G. Yan and T. Viraraghavan, Bioresour. Technol., 78, 243 (2001); https://doi.org/10.1016/S0960-8524(01)00020-7.
U. Farooq, J.A. Kozinski, M.A. Khan and M. Athar, Bioresour. Technol., 101, 5043 (2010); https://doi.org/10.1016/j.biortech.2010.02.030.
B.K. Reck, D.B. Müller, K. Rostkowski and T.E. Graedel, Environ. Sci. Technol., 42, 3394 (2008); https://doi:10.1021/es072108l.
A. Perosa and P. Tundo, Ind. Eng. Chem. Res., 44, 8535 (2005); https://doi:10.1021/ie0489251.
A.K. Shukla, S. Venugopalan and B. Hariprakash, J. Power Sources, 100, 125 (2001); https://doi.org/10.1016/S0378-7753(01)00890-4.
E. Denkhaus and K. Salnikow, Crit. Rev. Oncol. Hematol., 42, 35 (2002); https://doi.org/10.1016/S1040-8428(01)00214-1.
K.S. Kasprzak, F.W. Sunderman and K. Salnikow, Mutat. Res., 533, 67 (2003); https://doi.org/10.1016/j.mrfmmm.2003.08.021.
M. Cempel and G. Nikel, Pol. J. Environ. Stud., 15, 375 (2006);
J.J.M. Orfao, A.I.M. Silva, J.C.V. Pereira, S.A. Barata, I.M. Fonseca, P.C.C. Faria and M.F.R. Pereira, J. Colloid Interface Sci., 296, 480 (2006); https://doi.org/10.1016/j.jcis.2005.09.063.
S. Hashemian, Asian J. Chem., 21, 3622 (2009).
S. Ben-Ali, I. Jaouali, S. Souissi-Najar and A. Ouederni, J. Clean. Prod., 142, 3809 (2017); https://doi.org/10.1016/j.jclepro.2016.10.081.
A.S. Özcan and A. Özcan, J. Colloid Interface Sci., 276, 39 (2004); https://doi.org/10.1016/j.jcis.2004.03.043.
A.S. Özcan, O. Gok and A. Özcan, J. Hazard. Mater., 161, 499 (2009); https://doi.org/10.1016/j.jhazmat.2008.04.002.
R. Naseem and S.S. Tahir, Water Res., 35, 3982 (2001); https://doi.org/10.1016/S0043-1354(01)00130-0.
Z.N. Garba and A.A. Rahim, Process Saf. Environ. Prot., 102, 54 (2016); https://doi.org/10.1016/j.psep.2016.02.006.
H. Singh, G. Chauhan, A.K. Jain and S.K. Sharma, J. Environ. Chem. Eng., 5, 122 (2017); https://doi.org/10.1016/j.jece.2016.11.030.
N. Ayawei, A.N. Ebelegi and D. Wankasi, J. Chem., Article ID 3039817 (2017); https://doi.org/10.1155/2017/3039817.
M.G.A. Vieira, A.F. Almeida-Neto, M.L. Gimenes and M.G.C. da Silva, J. Hazard. Mater., 177, 362 (2010); https://doi.org/10.1016/j.jhazmat.2009.12.040.
S.S. Al-Shahrani, Int. J. Eng. Technol., 12, 14 (2012).
C.M. Futalan, W.-C. Tsai, S.-S. Lin, K.-J. Hsien, M.L. Dalida and M.-W. Wan, Sustain. Environ. Res., 22, 345, (2012).
B.N. Sandeep and S. Suresha, Int. J. Environ. Sci., 4, 113 (2013); https://doi:10.6088/ijes.2013040100012.
M.G. Bhagyalakshmi and P.N. Sarma, J. Chem. Pharm. Res., 7, 140 (2015);
E. Alvarez-Ayo, A. Garcia-Sanchez and X. Queol, Water Res., 37, 4885 (2003); https://doi.org/10.1016/j.watres.2003.08.009.
N.M. Alandis, O.A. Aldaye, W.K. Mekhemer, J.A. Hefne and H.A. Jakhob, J. Dispers. Sci. Technol., 31, 1526 (2010); https://doi.org/10.1080/01932690903294097.
M.-H. Baek and C.O. Ljabemi, J. Hazard. Mater., 176, 820 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.110.
L. Bulgariu, D. Bulgariu and M. Macoveanu, Environ. Eng. Manage. J., 9, 667 (2010)