Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparative Studies on Polyacrylic Based Anti-Algal Coating Formulation with SiO2@TiO2 Core-Shell Nanoparticles
Corresponding Author(s) : Jaya Verma
Asian Journal of Chemistry,
Vol. 30 No. 5 (2018): Vol 30 Issue 5, 2018
Abstract
In the present study, we developed anti-algal coating formulation with silica (SiO2), titania (TiO2) and silica-titania core-shell nanoparticles individually. This core-shell nanoparticle was formulated because of silica is a hard material that provides the mechanical strength and shell TiO2 on core silica can impart the antimicrobial property of material. These nanoparticles were prepared through sol-gel process and peptization process and characterized by dynamic light scattering, UV-visible spectrophotometer and X-ray diffraction. Particle size was measured 90 nm for silica nanoparticle prepared through sol-gel process. TiO2 nanoparticle size was measured 107 nm prepared through sol-gel synthesis and 77 nm prepared through peptization process. Particle size of silica-titania core-shell nanoparticle was measured 240 nm prepared through sol-gel process and 144 nm from peptization process. The coating formulation were developed with the above nanoparticles individually and nanoparticle concentration was maintained at 4 % (wt) in polyacrylic binder. These coatings were applied on bricks for anti-algal testing against green algae and mixed algae. Optical density was measured of these samples at 665 nm up to 120 h and observed that nano-coating developed with silica-titania core-shell nanoparticle prepared through peptization process has shown good anti-algal effect as compared to nano-coating developed with silica-titania core-shell nanoparticles prepared through sol-gel process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Appendini and J.H. Hotchkiss, Innov. Food Sci. Emerg., 3, 113 (2002); https://doi.org/10.1016/S1466-8564(02)00012-7.
- S. Noimark, C.W. Dunnill, I.P. Wilson and I.P. Parkin, Chem. Soc. Rev., 38, 3435 (2009); https://doi.org/10.1039/b908260c.
- M. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 27, 76 (2009); https://doi.org/10.1016/j.biotechadv.2008.09.002.
- C.P. Dunlop, C.P. Sheeran, J.A. Byrne, M.A.S. McMahon, M.A. Boyle and K.G. McGuigan, J. Photochem. Photobiol., 216, 303 (2010); https://doi.org/10.1016/j.jphotochem.2010.07.004.
- T.V. Duncan, J. Colloid Interface Sci., 363, 1 (2011); https://doi.org/10.1016/j.jcis.2011.07.017.
- A. Kubacka, C. Serrano, M. Ferrer, H. Lünsdorf, P. Bielecki, M.L. Cerrada, M. Fernández-García and M. Fernández-García, Nano Lett., 7, 2529 (2007); https://doi.org/10.1021/nl0709569.
- M.L. Cerrada, C. Serrano, M. Sánchez-Chaves, M. Fernández-García, F. Fernández-Martín, A. de Andrés, R.J.J. Riobóo, A. Kubacka, M. Ferrer and M. Fernández-García, Adv. Funct. Mater., 18, 1949 (2008); https://doi.org/10.1002/adfm.200701068.
- L.M. Hamming, R. Qiao, P.B. Messersmith and L. Catherine Brinson, Compos. Sci. Technol., 69, 1880 (2009); https://doi.org/10.1016/j.compscitech.2009.04.005.
- J. Luan, S. Wang, Z. Hu and L. Zhang, Curr. Org. Synth., 9, 114 (2012); https://doi.org/10.2174/157017912798889161.
- A. Kubacka, M.L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer and M. Fernández-Garcia, J. Phys. Chem. C, 113, 9182 (2009); https://doi.org/10.1021/jp901337e.
- A. Kubacka, M. Ferrer, M.L. Cerrada, C. Serrano, M. Sánchez-Chaves, M. Fernández-García, A. de Andrés, R.J.J. Riobóo, F. Fernández-Martín and M. Fernández-García, Appl. Catal. B, 89, 441 (2009); https://doi.org/10.1016/j.apcatb.2009.01.002.
- A. Kubacka, M. Ferrer and M. Fernández-García, Appl. Catal. B, 121- 122, 230 (2012); https://doi.org/10.1016/j.apcatb.2012.03.016.
- J. Wiener, JAMA, 281, 517 (1999); https://doi.org/10.1001/jama.281.6.517.
- S. Josset, N. Keller, M.C. Lett, M.L. Ledoux and V. Keller, Chem. Soc. Rev., 37, 744 (2008); https://doi.org/10.1039/B711748P.
- P.V. Asharani, G.L.K. Mun, M.P. Handi and S. Valiyaveetil, ACS Nano, 3, 279 (2006); https://doi.org/10.1021/nn800596w.
- A. Llorens, E. Lloret, P.A. Picouet, R. Trbojevich and A. Fernandez, Trends Food Sci. Technol., 24, 19 (2012); https://doi.org/10.1016/j.tifs.2011.10.001.
- A. Kubacka, M.S. Diez, D. Rojo, R. Bargiela, S. Ciordia, I. Zapico, J.P. Albar, C. Barbas, V.A.P.M. dos Santos, M. Fernández-Garcia and M. Ferrer, Scient. Rep, 4, Article No. 4134 (2014); https://doi.org/10.1038/srep04134.
- C. Boissiere, M. Kummel, M. Persin, A. Larbot and E. Prouzet, Adv. Funct. Mater., 11, 129 (2001); https://doi.org/10.1002/1616-3028(200104)11:2<129::AIDADFM129>3.0.CO;2-W.
- J.S. Kim, E.G. Jung, H.H. Yun and S.M. Koo, J. Ceramic Process. Res., 14, 327 (2013).
References
P. Appendini and J.H. Hotchkiss, Innov. Food Sci. Emerg., 3, 113 (2002); https://doi.org/10.1016/S1466-8564(02)00012-7.
S. Noimark, C.W. Dunnill, I.P. Wilson and I.P. Parkin, Chem. Soc. Rev., 38, 3435 (2009); https://doi.org/10.1039/b908260c.
M. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 27, 76 (2009); https://doi.org/10.1016/j.biotechadv.2008.09.002.
C.P. Dunlop, C.P. Sheeran, J.A. Byrne, M.A.S. McMahon, M.A. Boyle and K.G. McGuigan, J. Photochem. Photobiol., 216, 303 (2010); https://doi.org/10.1016/j.jphotochem.2010.07.004.
T.V. Duncan, J. Colloid Interface Sci., 363, 1 (2011); https://doi.org/10.1016/j.jcis.2011.07.017.
A. Kubacka, C. Serrano, M. Ferrer, H. Lünsdorf, P. Bielecki, M.L. Cerrada, M. Fernández-García and M. Fernández-García, Nano Lett., 7, 2529 (2007); https://doi.org/10.1021/nl0709569.
M.L. Cerrada, C. Serrano, M. Sánchez-Chaves, M. Fernández-García, F. Fernández-Martín, A. de Andrés, R.J.J. Riobóo, A. Kubacka, M. Ferrer and M. Fernández-García, Adv. Funct. Mater., 18, 1949 (2008); https://doi.org/10.1002/adfm.200701068.
L.M. Hamming, R. Qiao, P.B. Messersmith and L. Catherine Brinson, Compos. Sci. Technol., 69, 1880 (2009); https://doi.org/10.1016/j.compscitech.2009.04.005.
J. Luan, S. Wang, Z. Hu and L. Zhang, Curr. Org. Synth., 9, 114 (2012); https://doi.org/10.2174/157017912798889161.
A. Kubacka, M.L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer and M. Fernández-Garcia, J. Phys. Chem. C, 113, 9182 (2009); https://doi.org/10.1021/jp901337e.
A. Kubacka, M. Ferrer, M.L. Cerrada, C. Serrano, M. Sánchez-Chaves, M. Fernández-García, A. de Andrés, R.J.J. Riobóo, F. Fernández-Martín and M. Fernández-García, Appl. Catal. B, 89, 441 (2009); https://doi.org/10.1016/j.apcatb.2009.01.002.
A. Kubacka, M. Ferrer and M. Fernández-García, Appl. Catal. B, 121- 122, 230 (2012); https://doi.org/10.1016/j.apcatb.2012.03.016.
J. Wiener, JAMA, 281, 517 (1999); https://doi.org/10.1001/jama.281.6.517.
S. Josset, N. Keller, M.C. Lett, M.L. Ledoux and V. Keller, Chem. Soc. Rev., 37, 744 (2008); https://doi.org/10.1039/B711748P.
P.V. Asharani, G.L.K. Mun, M.P. Handi and S. Valiyaveetil, ACS Nano, 3, 279 (2006); https://doi.org/10.1021/nn800596w.
A. Llorens, E. Lloret, P.A. Picouet, R. Trbojevich and A. Fernandez, Trends Food Sci. Technol., 24, 19 (2012); https://doi.org/10.1016/j.tifs.2011.10.001.
A. Kubacka, M.S. Diez, D. Rojo, R. Bargiela, S. Ciordia, I. Zapico, J.P. Albar, C. Barbas, V.A.P.M. dos Santos, M. Fernández-Garcia and M. Ferrer, Scient. Rep, 4, Article No. 4134 (2014); https://doi.org/10.1038/srep04134.
C. Boissiere, M. Kummel, M. Persin, A. Larbot and E. Prouzet, Adv. Funct. Mater., 11, 129 (2001); https://doi.org/10.1002/1616-3028(200104)11:2<129::AIDADFM129>3.0.CO;2-W.
J.S. Kim, E.G. Jung, H.H. Yun and S.M. Koo, J. Ceramic Process. Res., 14, 327 (2013).