Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antidiabetic Activity of Some Water Soluble Zn(II) Complexes with (E)-N-(Thiophen-2-ylmethylene)anilines
Corresponding Author(s) : Sajal Kundu
Asian Journal of Chemistry,
Vol. 30 No. 5 (2018): Vol 30 Issue 5, 2018
Abstract
Synthesis and spectroscopic characterization of five water soluble zinc(II) complexes of (E)-N-(thiophen-2-ylmethylene)anilines (L1-3) with the general formula [ZnX2L1-3; X = Cl–, NO3–; (1-5)] are reported. The complexes were characterized by elemental analysis, UV-visible, fluorescence, IR and 1H NMR spectroscopy. Efforts for getting single crystal suitable for X-ray crystal structure could not be achieved. However, from spectroscopic data, the complexes are proposed to adopt four coordinated tetrahedral and six coordinated octahedral geometry. All the complexes were obtained in moderate to good yields and these compounds behave as non-electrolytes in acetonitrile solution. UV-visible and fluorescence spectral study of complexes 1-5 indicate (intra-ligand) ligand to ligand charge transfer transition. The complexes were screened for their antidiabetic activity against α-glucosidase enzyme and compared with standard drug acarbose. Complex 1 was found to exhibit effective antidiabetic activity among the tested compounds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.C. Maurya, D.D. Mishra, S. Jain and M. Jaiswal, Synth. React. Inorg. Met.-Org. Chem., 23, 1335 (1993); https://doi.org/10.1080/15533179308016690.
- A. Hatzidimitriou and C.A. Bolos, Polyhedron, 17, 1779 (1998); https://doi.org/10.1016/S0277-5387(97)00438-5.
- J.M. Tercero, A. Matilla, M.A. Sanjuán, C.F. Moreno, J.D. Martín and J.A. Walmsley, Inorg. Chim. Acta, 342, 77 (2003); https://doi.org/10.1016/S0020-1693(02)01071-X.
- N.M. Milovic, L.-M. Dutca and N.M. Kostic, Inorg. Chem., 42, 4036 (2003); https://doi.org/10.1021/ic026280w.;
- J.G. Tojal, J.L. Pizarro, A. Garcia-Orad, A.R. Perez-Sanz, M. Ugalde, A.A. Diaz, J.L. Serra, M.I. Arriortua and T. Rojo, J. Inorg. Biochem., 86, 627 (2001); https://doi.org/10.1016/S0162-0134(01)00210-0.
- A.S. Demir, O. Reis and M. Emrullahoglu, Tetrahedron, 58, 8055 (2002); https://doi.org/10.1016/S0040-4020(02)01001-3.
- C.-Y. Wu, L.-H. Chen, W.-S. Hwang, H.-S. Chen and C.-H. Hung, J. Organomet. Chem., 689, 2192 (2004); https://doi.org/10.1016/j.jorganchem.2004.04.004.
- M. da Cunha Belo, J. Electrochem. Soc., 124, 1317 (1977); https://doi.org/10.1149/1.2133616.
- H.L. Singh, S. Varshney and A.K. Varshney, Appl. Organomet. Chem., 13, 637 (1999); https://doi.org/10.1002/(SICI)1099-0739(199909)13:9<637::AIDAOC919>3.0.CO;2-K.
- M. Idren, M. Siddique, S.D. Patil, A.G. Joshi and A.W. Raut, Orient. J. Chem., 17, 131 (2001).
- N. Sar and P.G. Urkan, Z. Naturforsch., 59b, 692 (2004).
- K.S. Siddiqi, R.I. Kureshy, N.H. Khan, S. Tabassum and S. Zaidi, Inorg. Chim. Acta, 151, 95 (1988); https://doi.org/10.1016/S0020-1693(00)91888-7.
- D.A. Laidler and D.J. Milner, J. Organomet. Chem., 270, 121 (1984); https://doi.org/10.1016/0022-328X(84)80341-1.
- E. Pontiki, D. Hadjipavlou-litina and A.T. Chaviara, J. Enzyme Inhib. Med. Chem., 23, 1011 (2008); https://doi.org/10.1080/14756360701841251.
- J. Wiedermann, K. Mereiter and K. Kirchner, J. Mol. Catal. Chem., 257, 67 (2006); https://doi.org/10.1016/j.molcata.2006.04.009.
- M.E. Lopez-Viseras, B. Fernandez, S. Hilfiker, C.S. Gonzalez, J.L. Gonzalez, A.J. Calahorro, E. Colacio and A. Rodriguez-Dieguez, J. Inorg. Biochem., 131, 64 (2014); https://doi.org/10.1016/j.jinorgbio.2013.10.019.
- J. Vanco, J. Marek, Z. Trávnícek, E. Racanská, J. Muselík and O. Svajlenová, J. Inorg. Biochem., 102, 595 (2008); https://doi.org/10.1016/j.jinorgbio.2007.10.003.
- N.S. Moyon and S. Mitra, J. Phys. Chem. B, 115, 10163 (2011); https://doi.org/10.1021/jp204424w.
- D. Kumar, H. Kumar, J.R. Vedasiromoni and B.C. Pal, Phytochem. Anal., 23, 421 (2012); https://doi.org/10.1002/pca.1375.
- M. Roy, S. Roy, K.S. Singh, J. Kalita and S.S. Singh, Inorg. Chim. Acta, 439, 164 (2016); https://doi.org/10.1016/j.ica.2015.10.012.
- T.S. Basu Baul, S. Kundu, S. Mitra, H. Höpfl, E.R.T. Tiekink and A. Linden, Dalton Trans., 42, 1905 (2013); https://doi.org/10.1039/C2DT32283H.
- R.C. Maurya and P. Patel, Spectrosc. Lett., 32, 213 (1999); https://doi.org/10.1080/00387019909349979.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic & Coordination Compounds, Wiley, New York (1986).
- G.J. Kleywegt, W.G.R. Wiesmeijer, G.J. Van Driel, W.L. Driessen, J. Reedijk and J.H. Noordik, J. Chem. Soc., Dalton Trans., 2177 (1985); http://dx.doi.org/10.1039/DT9850002177.
- C.C. Ji, L. Qin, Y.Z. Li, Z.J. Guo and H.G. Zheng, Cryst. Growth Des., 11, 480 (2011); https://doi.org/10.1021/cg101261f.
- C. Seward, J. Chan, D. Song and S.N. Wang, Inorg. Chem., 42, 1112 (2003); https://doi.org/10.1021/ic020480q.
- M. Melnik, K. Gyoryova, J. Skorsepa and C.E. Holloway, J. Coord. Chem., 35, 179 (1995); https://doi.org/10.1080/00958979508024038.
- U. Simonis, F.A. Walker, P.L. Lee, B.J. Hanquet, D.J. Meyerhoff and W.R. Scheidt, J. Am. Chem. Soc., 109, 2659 (1987); https://doi.org/10.1021/ja00243a018.
- W.R. Scheidt, J.U. Mondal, C.W. Eigenbrot, A. Adler, L.J. Radonovich and J.L. Hoard, Inorg. Chem., 25, 795 (1986); https://doi.org/10.1021/ic00226a014.
- M.C. Sharaby, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 1271 (2007); https://doi.org/10.1016/j.saa.2006.05.030.
- A.K. Boudalis, V. Nastopoulos, S.P. Perlepes, C.P. Raptopoulou and A. Terzis, Transition Met. Chem., 26, 276 (2001); https://doi.org/10.1023/A:1007185119324.
- T.S. Basu Baul, S. Kundu, P. Singh, S. Shaveta and M.F.C. Guedes da Silva, Dalton Trans., 44, 2359 (2015); https://doi.org/10.1039/C4DT03151B.
- T.S. Basu Baul, S. Kundu, A. Linden, N. Raviprakash, S.K. Manna and M.F.C. Guedes da Silva, Dalton Trans., 43, 1191 (2014); https://doi.org/10.1039/C3DT52062E.;
- I. Tasuku, K. Masako and I. Haruko, Bull. Chem. Soc. Jpn., 57, 2634 (1984); https://doi.org/10.1246/bcsj.57.2634.
- M. Roy, S. Roy, K.S. Singh, J. Kalita and S.S. Singh, New J. Chem., 40, 1471 (2016); https://doi.org/10.1039/C5NJ02637G.
References
R.C. Maurya, D.D. Mishra, S. Jain and M. Jaiswal, Synth. React. Inorg. Met.-Org. Chem., 23, 1335 (1993); https://doi.org/10.1080/15533179308016690.
A. Hatzidimitriou and C.A. Bolos, Polyhedron, 17, 1779 (1998); https://doi.org/10.1016/S0277-5387(97)00438-5.
J.M. Tercero, A. Matilla, M.A. Sanjuán, C.F. Moreno, J.D. Martín and J.A. Walmsley, Inorg. Chim. Acta, 342, 77 (2003); https://doi.org/10.1016/S0020-1693(02)01071-X.
N.M. Milovic, L.-M. Dutca and N.M. Kostic, Inorg. Chem., 42, 4036 (2003); https://doi.org/10.1021/ic026280w.;
J.G. Tojal, J.L. Pizarro, A. Garcia-Orad, A.R. Perez-Sanz, M. Ugalde, A.A. Diaz, J.L. Serra, M.I. Arriortua and T. Rojo, J. Inorg. Biochem., 86, 627 (2001); https://doi.org/10.1016/S0162-0134(01)00210-0.
A.S. Demir, O. Reis and M. Emrullahoglu, Tetrahedron, 58, 8055 (2002); https://doi.org/10.1016/S0040-4020(02)01001-3.
C.-Y. Wu, L.-H. Chen, W.-S. Hwang, H.-S. Chen and C.-H. Hung, J. Organomet. Chem., 689, 2192 (2004); https://doi.org/10.1016/j.jorganchem.2004.04.004.
M. da Cunha Belo, J. Electrochem. Soc., 124, 1317 (1977); https://doi.org/10.1149/1.2133616.
H.L. Singh, S. Varshney and A.K. Varshney, Appl. Organomet. Chem., 13, 637 (1999); https://doi.org/10.1002/(SICI)1099-0739(199909)13:9<637::AIDAOC919>3.0.CO;2-K.
M. Idren, M. Siddique, S.D. Patil, A.G. Joshi and A.W. Raut, Orient. J. Chem., 17, 131 (2001).
N. Sar and P.G. Urkan, Z. Naturforsch., 59b, 692 (2004).
K.S. Siddiqi, R.I. Kureshy, N.H. Khan, S. Tabassum and S. Zaidi, Inorg. Chim. Acta, 151, 95 (1988); https://doi.org/10.1016/S0020-1693(00)91888-7.
D.A. Laidler and D.J. Milner, J. Organomet. Chem., 270, 121 (1984); https://doi.org/10.1016/0022-328X(84)80341-1.
E. Pontiki, D. Hadjipavlou-litina and A.T. Chaviara, J. Enzyme Inhib. Med. Chem., 23, 1011 (2008); https://doi.org/10.1080/14756360701841251.
J. Wiedermann, K. Mereiter and K. Kirchner, J. Mol. Catal. Chem., 257, 67 (2006); https://doi.org/10.1016/j.molcata.2006.04.009.
M.E. Lopez-Viseras, B. Fernandez, S. Hilfiker, C.S. Gonzalez, J.L. Gonzalez, A.J. Calahorro, E. Colacio and A. Rodriguez-Dieguez, J. Inorg. Biochem., 131, 64 (2014); https://doi.org/10.1016/j.jinorgbio.2013.10.019.
J. Vanco, J. Marek, Z. Trávnícek, E. Racanská, J. Muselík and O. Svajlenová, J. Inorg. Biochem., 102, 595 (2008); https://doi.org/10.1016/j.jinorgbio.2007.10.003.
N.S. Moyon and S. Mitra, J. Phys. Chem. B, 115, 10163 (2011); https://doi.org/10.1021/jp204424w.
D. Kumar, H. Kumar, J.R. Vedasiromoni and B.C. Pal, Phytochem. Anal., 23, 421 (2012); https://doi.org/10.1002/pca.1375.
M. Roy, S. Roy, K.S. Singh, J. Kalita and S.S. Singh, Inorg. Chim. Acta, 439, 164 (2016); https://doi.org/10.1016/j.ica.2015.10.012.
T.S. Basu Baul, S. Kundu, S. Mitra, H. Höpfl, E.R.T. Tiekink and A. Linden, Dalton Trans., 42, 1905 (2013); https://doi.org/10.1039/C2DT32283H.
R.C. Maurya and P. Patel, Spectrosc. Lett., 32, 213 (1999); https://doi.org/10.1080/00387019909349979.
K. Nakamoto, Infrared and Raman Spectra of Inorganic & Coordination Compounds, Wiley, New York (1986).
G.J. Kleywegt, W.G.R. Wiesmeijer, G.J. Van Driel, W.L. Driessen, J. Reedijk and J.H. Noordik, J. Chem. Soc., Dalton Trans., 2177 (1985); http://dx.doi.org/10.1039/DT9850002177.
C.C. Ji, L. Qin, Y.Z. Li, Z.J. Guo and H.G. Zheng, Cryst. Growth Des., 11, 480 (2011); https://doi.org/10.1021/cg101261f.
C. Seward, J. Chan, D. Song and S.N. Wang, Inorg. Chem., 42, 1112 (2003); https://doi.org/10.1021/ic020480q.
M. Melnik, K. Gyoryova, J. Skorsepa and C.E. Holloway, J. Coord. Chem., 35, 179 (1995); https://doi.org/10.1080/00958979508024038.
U. Simonis, F.A. Walker, P.L. Lee, B.J. Hanquet, D.J. Meyerhoff and W.R. Scheidt, J. Am. Chem. Soc., 109, 2659 (1987); https://doi.org/10.1021/ja00243a018.
W.R. Scheidt, J.U. Mondal, C.W. Eigenbrot, A. Adler, L.J. Radonovich and J.L. Hoard, Inorg. Chem., 25, 795 (1986); https://doi.org/10.1021/ic00226a014.
M.C. Sharaby, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 1271 (2007); https://doi.org/10.1016/j.saa.2006.05.030.
A.K. Boudalis, V. Nastopoulos, S.P. Perlepes, C.P. Raptopoulou and A. Terzis, Transition Met. Chem., 26, 276 (2001); https://doi.org/10.1023/A:1007185119324.
T.S. Basu Baul, S. Kundu, P. Singh, S. Shaveta and M.F.C. Guedes da Silva, Dalton Trans., 44, 2359 (2015); https://doi.org/10.1039/C4DT03151B.
T.S. Basu Baul, S. Kundu, A. Linden, N. Raviprakash, S.K. Manna and M.F.C. Guedes da Silva, Dalton Trans., 43, 1191 (2014); https://doi.org/10.1039/C3DT52062E.;
I. Tasuku, K. Masako and I. Haruko, Bull. Chem. Soc. Jpn., 57, 2634 (1984); https://doi.org/10.1246/bcsj.57.2634.
M. Roy, S. Roy, K.S. Singh, J. Kalita and S.S. Singh, New J. Chem., 40, 1471 (2016); https://doi.org/10.1039/C5NJ02637G.