Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Source of Silica on Properties of Fe2O3/SiO2 Nanocompsites and Their Application on Hepatic Injury in Rats as Adsorbents for Removal of Heavy Metal from Drinking Water
Corresponding Author(s) : Soheir N. Abd El-Rahman
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
A series of iron oxide silica composites (70/30, 50/50 and 30/70) were prepared using rice hull silica gel as natural silica and TEOS. The prepared samples were characterized by X-ray diffraction, FTIR spectra, BET measurement and SEM. The results show that the particle size is dependent synthesis conditions. BET measurement showed that the values of surface area of the samples are on the range of (320-43 m2/g) and increase with increasing the iron content. The results showed that the surface area of composites prepared from nature silica is lower than that prepared from TEOS. This result was explained on the basis of particle size effect. SEM showed that the size and homogeneity of particles are independent on the Fe2O3 content. Additionally, the effect of drinking water heavy metals (DWHM: Pb, Hg, Ni, Fe and Mg) and DWHM purified with nature silica and TEOS (0.05 and 1.0 g/L.W) on liver injury was evaluated in male rats, as manifested by changes in the activities of certain serum enzymes, such as Fasting blood sugar (FBS), TC, LDL-C, HDL-C, TG, ALT and AST were determined as markers of liver disease. In addition, ALP, g-glutamyltransferase (GGT), LDH and CK were also determined in male rats. The results showed significantly (p £ 0.05) deceased in serum TC, TG, LDL, AST, ALT, ALP, FBS and LDH in male rats administration of DWHM purified with nature silica and TEOS (0.05 and 1.0 g/L.W) compared to rats administration of DWHM (PC). On the other hand, HDL and CK were increased significantly (p £ 0.05) compared to PC. All these results were accompanied by histological observations in liver. The results demonstrate that nature silica has a beneficial effect in DWHM purification than TEOS.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M. Hamby, Sci. Total Environ., 191, 203 (1996); https://doi.org/10.1016/S0048-9697(96)05264-3.
- A. Demirak, F. Yilmaz, A. Levent Tuna and N. Ozdemir, Chemosphere, 63, 1451 (2006); https://doi.org/10.1016/j.chemosphere.2005.09.033.
- P. Chanpiwat, S. Sthiannopkao and K.W. Kim, Microchem. J., 95, 326 (2010); https://doi.org/10.1016/j.microc.2010.01.013.
- S. Muhammad, M.T. Shah and S. Khan, Food Chem. Toxicol., 48, 2855 (2010); https://doi.org/10.1016/j.fct.2010.07.018.
- A.K. Krishna, M. Satyanarayanan and P.K. Govil, J. Hazard. Mater., 167, 366 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.131.
- H. Pekey, D. Karakas and M. Bakoglu, Mar. Pollut. Bull., 49, 809 (2004); https://doi.org/10.1016/j.marpolbul.2004.06.029.
- Y. Ouyang, J. Higman, J. Thompson, T.O. Toole and D. Campbell, J. Contam. Hydrol., 54, 19 (2002); https://doi.org/10.1016/S0169-7722(01)00162-0.
- C. Knight, G.C. Kaiser, H. Lailor and J.V. Witter, Environ. Geochem. Health, 19, 63 (1997); https://doi.org/10.1023/A:1018442219943.
- K. Steenland and P. Boffetta, Am. J. Ind. Med., 38, 295 (2000); https://doi.org/10.1002/1097-0274(200009)38:3<295::AID-AJIM8>3.0.CO;2-L.
- W.I. Mortada, M.A. Sobh, M.M. El-Defrawy and S.E. Farahat, Am. J. Nephrol., 21, 274 (2001); https://doi.org/10.1159/000046261.
- H.H. Dieter, T.A. Bayer and G. Multhaup, Clean, Soil Air Water, 33, 72 (2005); https://doi.org/10.1002/aheh.200400556.
- L. Jarup, Br. Med. Bull., 68, 167 (2003); https://doi.org/10.1093/bmb/ldg032.
- M.D. LaGrega, P.L. Buckingham and J.C. Evans, Hazardous Waste Management, McGraw-Hill Inc. (1994).
- Q.L. Lu and G.A. Sorial, Chemosphere, 55, 671 (2004); https://doi.org/10.1016/j.chemosphere.2003.11.044.
- N.A. Zeid, G. Nakhla, S. Farooq and E. Oseitwum, Water Res., 29, 653 (1995); https://doi.org/10.1016/0043-1354(94)00158-4.
- R.V. Siriwardane, M.S. Shen, E.P. Fisher and J. Losch, Energy Fuels, 19, 1153 (2005); https://doi.org/10.1021/ef040059h.
- M.A. Hernandez, L. Corona, A.I. Gonzalez, F. Rojas, V.H. Lara and F. Silva, Ind. Eng. Chem. Res., 44, 2908 (2005); https://doi.org/10.1021/ie049276w.
- B.H. Gu, J. Schmitt, Z. Chen, L.Y. Liang and J.F. McCarthy, Geochim. Cosmochim. Acta, 59, 219 (1995); https://doi.org/10.1016/0016-7037(94)00282-Q.
- C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson and V.L. Colvin, Science, 314, 964 (2006); https://doi.org/10.1126/science.1131475.
- B.O. Juliano, Rice Hull and Rice Straw, In: Rice: Chemistry and Technology, American Association of Cereal Chemistry: St. Paul, MN pp. 695-698 (1985).
- B.O. Juliano, C.C. Maningat and C.G. Pascual, Phytochemistry, 26, 3261 (1987); https://doi.org/10.1016/S0031-9422(00)82483-8.
- A.M. Hussein, H. El-Saied and M.H. Yasin, J. Chem. Technol. Biotechnol., 53, 147 (1992); https://doi.org/10.1002/jctb.280530207.
- A. Singh, K. Das and D.K. Sharma, J. Chem. Technol. Biotechnol., 34A, 51 (1984a).
- A. Singh, K. Das and D.K. Sharma, Agric. Wastes, 9, 131 (1984b); https://doi.org/10.1016/0141-4607(84)90068-4.
- T.-C. Luan and T.-C. Chou, Ind. Eng. Chem. Res., 29, 1922 (1990); https://doi.org/10.1021/ie00105a026.
- R.K. Iler, Silica Gels and Powders, In: The Chemistry of Silica, John Wiley & Sons: New York, pp. 462-729(1979).
- W. Panpa and S. Jinawath, Appl. Catal. B, 90, 389 (2009); https://doi.org/10.1016/j.apcatb.2009.03.029.
- M.M. Mohamed, F.I. Zidan and M. Thabet, Microporous Mesoporous Mater., 108, 193 (2008); https://doi.org/10.1016/j.micromeso.2007.03.043.
- D. Chakravorty, S. Basu, P.K. Mukherjee, S.K. Saha, B.N. Pal, A. Dan and S. Bhattacharya, J. Non-Cryst. Solids, 352, 601 (2006); https://doi.org/10.1016/j.jnoncrysol.2005.11.047.
- P.-I. Lee and S.L.-C. Hsu, Eur. Polym. J., 43, 294 (2007); https://doi.org/10.1016/j.eurpolymj.2006.11.013.
- P.H.M. Hoet, A. Nemmar and B. Nemery, Nat. Biotechnol., 22, 19 (2004); https://doi.org/10.1038/nbt0104-19.
- I. Hrianca, C. Caizer and M. Popovici, J. Optoelectron. Adv. Mater., 2, 634 (2000).
- S.R. Kamath and A. Proctor, Cereal Chem. J., 75, 484 (1998); https://doi.org/10.1094/CCHEM.1998.75.4.484.
- D.E. Nwokocha, E.K. Ejebe, N. Nwangwa, R. Ekene, R. Akonoghrere and J. Ukwu, J. Appl. Sci. Environ. Manage., 14, 89 (2010); https://doi.org/10.4314/jasem.v14i1.56506.
- C.D. Gardner, L.D. Lawson, E. Block, L.M. Chatterjee, A. Kiazand, R.R. Balise and H.C. Kraemer, Arch. Intern. Med., 167, 346 (2007); https://doi.org/10.1001/archinte.167.4.346.
- S. Schermer, The Blood Morphology of Laboratory Animal Longmans, Green and Co. Ltd., p. 350 (1967).
- C.C. Allain, L.S. Poon, C.S. Chan, W. Richamand and P. Fu, Clin. Chem., 20, 470 (1974).
- P. Fossati and L. Prencipe, Clin. Chem., 28, 2077 (1982).
- M.F. Lopez-virella, S. Stone, S. Ellis and J.A. Collwel, Clin. Chem., 23, 882 (1977).
- W.I. Friedewald, S.W. Stewart and T.F. Arnold, Clin. Chem., 18, 499 (1972).
- S. Reitman and S. Frankel, Am. J. Clin. Pathol., 28, 56 (1957); https://doi.org/10.1093/ajcp/28.1.56.
- P. Trinder, J. Clin. Pathol., 22, 158 (1969); https://doi.org/10.1136/jcp.22.2.158.
- W. Bablok, H. Passing, R. Bender and B. Schneider, J. Clin. Chem. Clin. Biochem., 26, 783 (1988); https://doi.org/10.1515/cclm.1988.26.11.783.
- N. Tietz, Clinical Guide to Laboratory Tests, edn 3 (1995).
- M. Ristiæ, M. Ivanda, S. Popoviæ and S. Musiæ, J. Non-Cryst. Solids, 303, 270 (2002); https://doi.org/10.1016/S0022-3093(02)00944-4.
- X. Huang and Z. Chen, J. Magn. Magn. Mater., 280, 37 (2004); https://doi.org/10.1016/j.jmmm.2004.02.020.
- E.T. Cabellos, Ph.D. Thesis, Synthesis of γ-Fe2O3-SiO2 Composite Nanoparticles Targeting Magnetic Resonance Imaging and Magnetic Hyperthermia Applications, Department de Fisica, Facultate Ciencies Universtat Autonoma de Barcelona, Barcelona, Spain (2009).
- Z. Surowiec, W. Gac and M. Wiertel, Acta Phys. Pol. A, 119, 18 (2011); https://doi.org/10.12693/APhysPolA.119.18.
- C.L. Raison and A.H. Miller, Am. J. Psychiatry, 160, 1554 (2003); https://doi.org/10.1176/appi.ajp.160.9.1554.
- D.G. Hardie and D. Carling, Eur. J. Biochem., 246, 259 (1997); https://doi.org/10.1111/j.1432-1033.1997.00259.x.
- J. Vandenberghe, eds.: J.M. Niesink and J.D. Vries, Hepatotoxicology: Mechanisms of Liver Toxicity and Methodological Aspects, CRC Press, Boca Roton, p. 718 (1995).
- S.V.S. Rana, R. Singh and S. Verma, Indian J. Exp. Biol., 34, 177 (1996).
- M. Kumar, M.K. Sharma and A. Kumar, J. Health Sci., 51, 424 (2005); https://doi.org/10.1248/jhs.51.424.
- A.R.D. Stebbing, Sci. Total Environ., 22, 213 (1982); https://doi.org/10.1016/0048-9697(82)90066-3.
- A. Sundberg, E.L. Appelkvist, G. Dallner and R. Nilsson, Environ. Health Perspect., 102, 293 (1994); https://doi.org/10.1289/ehp.94102s3293.
- N.H. Stacey and H. Kappus, Toxicol. Appl. Pharmacol., 63, 29 (1982); https://doi.org/10.1016/0041-008X(82)90023-0.
- E.L.B. Novelli, R.T. Hernandes, J.L.V.B. Novelli Filho and L.L. Barbosa, Environ. Pollut., 103, 295 (1998); https://doi.org/10.1016/S0269-7491(98)00109-2.
- R. Rahimi and M. Abdollahi, Pestic. Biochem. Physiol., 88, 115 (2007); https://doi.org/10.1016/j.pestbp.2006.10.003.
- H.S. Nagaraja and P.S. Jeganathan, Biomedicine, 19, 137 (1999).
- R. Durgut, A. Koc, R. Gonenci, R. Bal, S. Celik, M. Guzaf, M.E. Altug and O. Atesoglu, J. Appl. Biol. Sci., 2, 11 (2008).
- US-EPA, Air Quality Criteria Document for Lead, US Environmental Protection Agency, Washington DC, 4, pp. 264-267 (1986).
- E.J. Calabrese and L.A. Baldwin, Drug Metab. Rev., 24, 409 (1992); https://doi.org/10.3109/03602539208996299.
- T. Suzuki, S. Morimura, M.B. Diccianni, R. Yamada, S.-I. Hochi, M. Hirabayashi, A. Yuki, K. Nomura, T. Kitagawa, M. Imagawa and M. Muramatsu, J. Biol. Chem., 271, 1626 (1996); https://doi.org/10.1074/jbc.271.3.1626.
- A. Rabbani-Chadegani III, N. Fani, S. Abdossamadi and N. Shahmir, Bioch. Mol. Toxicol., 25, 127 (2011); https://doi.org/10.1002/jbt.20368.
References
D.M. Hamby, Sci. Total Environ., 191, 203 (1996); https://doi.org/10.1016/S0048-9697(96)05264-3.
A. Demirak, F. Yilmaz, A. Levent Tuna and N. Ozdemir, Chemosphere, 63, 1451 (2006); https://doi.org/10.1016/j.chemosphere.2005.09.033.
P. Chanpiwat, S. Sthiannopkao and K.W. Kim, Microchem. J., 95, 326 (2010); https://doi.org/10.1016/j.microc.2010.01.013.
S. Muhammad, M.T. Shah and S. Khan, Food Chem. Toxicol., 48, 2855 (2010); https://doi.org/10.1016/j.fct.2010.07.018.
A.K. Krishna, M. Satyanarayanan and P.K. Govil, J. Hazard. Mater., 167, 366 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.131.
H. Pekey, D. Karakas and M. Bakoglu, Mar. Pollut. Bull., 49, 809 (2004); https://doi.org/10.1016/j.marpolbul.2004.06.029.
Y. Ouyang, J. Higman, J. Thompson, T.O. Toole and D. Campbell, J. Contam. Hydrol., 54, 19 (2002); https://doi.org/10.1016/S0169-7722(01)00162-0.
C. Knight, G.C. Kaiser, H. Lailor and J.V. Witter, Environ. Geochem. Health, 19, 63 (1997); https://doi.org/10.1023/A:1018442219943.
K. Steenland and P. Boffetta, Am. J. Ind. Med., 38, 295 (2000); https://doi.org/10.1002/1097-0274(200009)38:3<295::AID-AJIM8>3.0.CO;2-L.
W.I. Mortada, M.A. Sobh, M.M. El-Defrawy and S.E. Farahat, Am. J. Nephrol., 21, 274 (2001); https://doi.org/10.1159/000046261.
H.H. Dieter, T.A. Bayer and G. Multhaup, Clean, Soil Air Water, 33, 72 (2005); https://doi.org/10.1002/aheh.200400556.
L. Jarup, Br. Med. Bull., 68, 167 (2003); https://doi.org/10.1093/bmb/ldg032.
M.D. LaGrega, P.L. Buckingham and J.C. Evans, Hazardous Waste Management, McGraw-Hill Inc. (1994).
Q.L. Lu and G.A. Sorial, Chemosphere, 55, 671 (2004); https://doi.org/10.1016/j.chemosphere.2003.11.044.
N.A. Zeid, G. Nakhla, S. Farooq and E. Oseitwum, Water Res., 29, 653 (1995); https://doi.org/10.1016/0043-1354(94)00158-4.
R.V. Siriwardane, M.S. Shen, E.P. Fisher and J. Losch, Energy Fuels, 19, 1153 (2005); https://doi.org/10.1021/ef040059h.
M.A. Hernandez, L. Corona, A.I. Gonzalez, F. Rojas, V.H. Lara and F. Silva, Ind. Eng. Chem. Res., 44, 2908 (2005); https://doi.org/10.1021/ie049276w.
B.H. Gu, J. Schmitt, Z. Chen, L.Y. Liang and J.F. McCarthy, Geochim. Cosmochim. Acta, 59, 219 (1995); https://doi.org/10.1016/0016-7037(94)00282-Q.
C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson and V.L. Colvin, Science, 314, 964 (2006); https://doi.org/10.1126/science.1131475.
B.O. Juliano, Rice Hull and Rice Straw, In: Rice: Chemistry and Technology, American Association of Cereal Chemistry: St. Paul, MN pp. 695-698 (1985).
B.O. Juliano, C.C. Maningat and C.G. Pascual, Phytochemistry, 26, 3261 (1987); https://doi.org/10.1016/S0031-9422(00)82483-8.
A.M. Hussein, H. El-Saied and M.H. Yasin, J. Chem. Technol. Biotechnol., 53, 147 (1992); https://doi.org/10.1002/jctb.280530207.
A. Singh, K. Das and D.K. Sharma, J. Chem. Technol. Biotechnol., 34A, 51 (1984a).
A. Singh, K. Das and D.K. Sharma, Agric. Wastes, 9, 131 (1984b); https://doi.org/10.1016/0141-4607(84)90068-4.
T.-C. Luan and T.-C. Chou, Ind. Eng. Chem. Res., 29, 1922 (1990); https://doi.org/10.1021/ie00105a026.
R.K. Iler, Silica Gels and Powders, In: The Chemistry of Silica, John Wiley & Sons: New York, pp. 462-729(1979).
W. Panpa and S. Jinawath, Appl. Catal. B, 90, 389 (2009); https://doi.org/10.1016/j.apcatb.2009.03.029.
M.M. Mohamed, F.I. Zidan and M. Thabet, Microporous Mesoporous Mater., 108, 193 (2008); https://doi.org/10.1016/j.micromeso.2007.03.043.
D. Chakravorty, S. Basu, P.K. Mukherjee, S.K. Saha, B.N. Pal, A. Dan and S. Bhattacharya, J. Non-Cryst. Solids, 352, 601 (2006); https://doi.org/10.1016/j.jnoncrysol.2005.11.047.
P.-I. Lee and S.L.-C. Hsu, Eur. Polym. J., 43, 294 (2007); https://doi.org/10.1016/j.eurpolymj.2006.11.013.
P.H.M. Hoet, A. Nemmar and B. Nemery, Nat. Biotechnol., 22, 19 (2004); https://doi.org/10.1038/nbt0104-19.
I. Hrianca, C. Caizer and M. Popovici, J. Optoelectron. Adv. Mater., 2, 634 (2000).
S.R. Kamath and A. Proctor, Cereal Chem. J., 75, 484 (1998); https://doi.org/10.1094/CCHEM.1998.75.4.484.
D.E. Nwokocha, E.K. Ejebe, N. Nwangwa, R. Ekene, R. Akonoghrere and J. Ukwu, J. Appl. Sci. Environ. Manage., 14, 89 (2010); https://doi.org/10.4314/jasem.v14i1.56506.
C.D. Gardner, L.D. Lawson, E. Block, L.M. Chatterjee, A. Kiazand, R.R. Balise and H.C. Kraemer, Arch. Intern. Med., 167, 346 (2007); https://doi.org/10.1001/archinte.167.4.346.
S. Schermer, The Blood Morphology of Laboratory Animal Longmans, Green and Co. Ltd., p. 350 (1967).
C.C. Allain, L.S. Poon, C.S. Chan, W. Richamand and P. Fu, Clin. Chem., 20, 470 (1974).
P. Fossati and L. Prencipe, Clin. Chem., 28, 2077 (1982).
M.F. Lopez-virella, S. Stone, S. Ellis and J.A. Collwel, Clin. Chem., 23, 882 (1977).
W.I. Friedewald, S.W. Stewart and T.F. Arnold, Clin. Chem., 18, 499 (1972).
S. Reitman and S. Frankel, Am. J. Clin. Pathol., 28, 56 (1957); https://doi.org/10.1093/ajcp/28.1.56.
P. Trinder, J. Clin. Pathol., 22, 158 (1969); https://doi.org/10.1136/jcp.22.2.158.
W. Bablok, H. Passing, R. Bender and B. Schneider, J. Clin. Chem. Clin. Biochem., 26, 783 (1988); https://doi.org/10.1515/cclm.1988.26.11.783.
N. Tietz, Clinical Guide to Laboratory Tests, edn 3 (1995).
M. Ristiæ, M. Ivanda, S. Popoviæ and S. Musiæ, J. Non-Cryst. Solids, 303, 270 (2002); https://doi.org/10.1016/S0022-3093(02)00944-4.
X. Huang and Z. Chen, J. Magn. Magn. Mater., 280, 37 (2004); https://doi.org/10.1016/j.jmmm.2004.02.020.
E.T. Cabellos, Ph.D. Thesis, Synthesis of γ-Fe2O3-SiO2 Composite Nanoparticles Targeting Magnetic Resonance Imaging and Magnetic Hyperthermia Applications, Department de Fisica, Facultate Ciencies Universtat Autonoma de Barcelona, Barcelona, Spain (2009).
Z. Surowiec, W. Gac and M. Wiertel, Acta Phys. Pol. A, 119, 18 (2011); https://doi.org/10.12693/APhysPolA.119.18.
C.L. Raison and A.H. Miller, Am. J. Psychiatry, 160, 1554 (2003); https://doi.org/10.1176/appi.ajp.160.9.1554.
D.G. Hardie and D. Carling, Eur. J. Biochem., 246, 259 (1997); https://doi.org/10.1111/j.1432-1033.1997.00259.x.
J. Vandenberghe, eds.: J.M. Niesink and J.D. Vries, Hepatotoxicology: Mechanisms of Liver Toxicity and Methodological Aspects, CRC Press, Boca Roton, p. 718 (1995).
S.V.S. Rana, R. Singh and S. Verma, Indian J. Exp. Biol., 34, 177 (1996).
M. Kumar, M.K. Sharma and A. Kumar, J. Health Sci., 51, 424 (2005); https://doi.org/10.1248/jhs.51.424.
A.R.D. Stebbing, Sci. Total Environ., 22, 213 (1982); https://doi.org/10.1016/0048-9697(82)90066-3.
A. Sundberg, E.L. Appelkvist, G. Dallner and R. Nilsson, Environ. Health Perspect., 102, 293 (1994); https://doi.org/10.1289/ehp.94102s3293.
N.H. Stacey and H. Kappus, Toxicol. Appl. Pharmacol., 63, 29 (1982); https://doi.org/10.1016/0041-008X(82)90023-0.
E.L.B. Novelli, R.T. Hernandes, J.L.V.B. Novelli Filho and L.L. Barbosa, Environ. Pollut., 103, 295 (1998); https://doi.org/10.1016/S0269-7491(98)00109-2.
R. Rahimi and M. Abdollahi, Pestic. Biochem. Physiol., 88, 115 (2007); https://doi.org/10.1016/j.pestbp.2006.10.003.
H.S. Nagaraja and P.S. Jeganathan, Biomedicine, 19, 137 (1999).
R. Durgut, A. Koc, R. Gonenci, R. Bal, S. Celik, M. Guzaf, M.E. Altug and O. Atesoglu, J. Appl. Biol. Sci., 2, 11 (2008).
US-EPA, Air Quality Criteria Document for Lead, US Environmental Protection Agency, Washington DC, 4, pp. 264-267 (1986).
E.J. Calabrese and L.A. Baldwin, Drug Metab. Rev., 24, 409 (1992); https://doi.org/10.3109/03602539208996299.
T. Suzuki, S. Morimura, M.B. Diccianni, R. Yamada, S.-I. Hochi, M. Hirabayashi, A. Yuki, K. Nomura, T. Kitagawa, M. Imagawa and M. Muramatsu, J. Biol. Chem., 271, 1626 (1996); https://doi.org/10.1074/jbc.271.3.1626.
A. Rabbani-Chadegani III, N. Fani, S. Abdossamadi and N. Shahmir, Bioch. Mol. Toxicol., 25, 127 (2011); https://doi.org/10.1002/jbt.20368.